Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Mater Sci Mater Med ; 35(1): 33, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900208

RESUMEN

Phosphate bioactive glass has been studied for its advanced biodegradability and active ion release capability. Our previous research found that phosphate glass containing (P2O5)-(Na2O)-(TiO2)-(CaO)-(SrO) or (ZnO) showed good biocompatibility with MG63 and hMSCs. This study further investigated the application of 5 mol% zinc oxide or 17.5 mol% strontium oxide in titanium-doped phosphate glass for bone tissue engineering. Ti-Ca-Na-Phosphate glasses, incorporating 5% zinc oxide or 17.5% strontium oxide, were made with melting quenching technology. The pre-osteoblast cell line MC3T3-E1 was cultured for indirect contact tests with graded diluted phosphate glass extractions and for direct contact tests by seeding cells on glass disks. The cell viability and cytotoxicity were analysed in vitro over 7 days. In vivo studies utilized the tibial defect model with or without glass implants. The micro-CT analysis was performed after surgery and then at 2, 6, and 12 weeks. Extractions from both zinc and strontium phosphate glasses showed no negative impact on MC3T3-E1 cell viability. Notably, non-diluted Zn-Ti-Ca-Na-phosphate glass extracts significantly increased cell viability by 116.8% (P < 0.01). Furthermore, MC3T3-E1 cells cultured with phosphate glass disks exhibited no increase in LDH release compared with the control group. Micro-CT images revealed that, over 12 weeks, both zinc-doped and strontium-doped phosphate glasses demonstrated good bone incorporation and longevity compared to the no-implant control. Titanium-doped phosphate glasses containing 5 mol% zinc oxide, or 17.5 mol% strontium oxide have promising application potential for bone regeneration research.


Asunto(s)
Regeneración Ósea , Supervivencia Celular , Vidrio , Fosfatos , Estroncio , Titanio , Estroncio/química , Estroncio/farmacología , Regeneración Ósea/efectos de los fármacos , Animales , Ratones , Fosfatos/química , Fosfatos/farmacología , Vidrio/química , Titanio/química , Supervivencia Celular/efectos de los fármacos , Ensayo de Materiales , Zinc/química , Línea Celular , Osteoblastos/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ingeniería de Tejidos/métodos , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Microtomografía por Rayos X
2.
Molecules ; 27(9)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35566277

RESUMEN

Therapeutic iodoform (CHI3) is commonly used as a root-filling material for primary teeth; however, the side effects of iodoform-containing materials, including early root resorption, have been reported. To overcome this problem, a water-soluble iodide (NaI)-incorporated root-filling material was developed. Calcium hydroxide, silicone oil, and NaI were incorporated in different weight proportions (30:30:X), and the resulting material was denoted DX (D5~D30), indicating the NaI content. As a control, iodoform instead of NaI was incorporated at a ratio of 30:30:30, and the material was denoted I30. The physicochemical (flow, film thickness, radiopacity, viscosity, water absorption, solubility, and ion releases) and biological (cytotoxicity, TRAP, ARS, and analysis of osteoclastic markers) properties were determined. The amount of iodine, sodium, and calcium ion releases and the pH were higher in D30 than I30, and the highest level of unknown extracted molecules was detected in I30. In the cell viability test, all groups except 100% D30 showed no cytotoxicity. In the 50% nontoxic extract, D30 showed decreased osteoclast formation compared with I30. In summary, NaI-incorporated materials showed adequate physicochemical properties and low osteoclast formation compared to their iodoform-counterpart. Thus, NaI-incorporated materials may be used as a substitute for iodoform-counterparts in root-filling materials after further (pre)clinical investigation.


Asunto(s)
Materiales de Obturación del Conducto Radicular , Hidróxido de Calcio , Materiales de Obturación del Conducto Radicular/farmacología , Yoduro de Sodio , Diente Primario , Agua
3.
J Craniofac Surg ; 32(1): 360-364, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32769577

RESUMEN

OBJECTIVES: To: (1) design an artifact-free 3D-printed MR-safe temporary transfer device, (2) engineer bone-pins from carbon fiber reinforced polyether ether ketone (CFR-PEEK), (3) evaluate the imaging artifacts of CFR-PEEK, and (4) confirm the osteointegration potential of CFR-PEEK, thus enhancing 3D-planning of bony advancements in hemifacial microsomia using sequential magnetic resonance imaging (MRI). STUDY DESIGN: Engineered CRF-PEEK bone pins and a 3D printed ex-fix device were implanted into a sheep head and imaged with MRI and computed tomography . The osseointegration and bony compatibility potential of CFR-PEEK was assessed with scanning electron microscopy images of MC3T3 preosteoblast cells on the surface of the material. RESULTS: The CFR-PEEK pins resulted in a signal void equivalent to the dimension of the pin, with no adjacent areas of MR-signal loss or computed tomography artifact. MCT3 cells adhered and proliferated on the surface of the discs by forming a monolayer of cells, confirming compatibility and osseointegration potential. CONCLUSION: A 3D printed transfer device could be utilized temporarily during MRI to permit artifact-free 3D planning. CFR-PEEK pins eliminate imaging artifact permitting sequential MRI examination. In combination, this has the potential to enhance distraction osteogenesis, by permitting accurate three-dimensional planning without ionizing radiation.


Asunto(s)
Artefactos , Osteogénesis por Distracción , Animales , Benzofenonas , Clavos Ortopédicos , Carbono , Fibra de Carbono , Éteres , Cetonas , Imagen por Resonancia Magnética , Polietilenglicoles , Polímeros , Ovinos
4.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34884657

RESUMEN

This study deals with the process of optimization and synthesis of Poly(3-hydroxybutyrate) microspheres with encapsulated Cl-amidine. Cl-amidine is an inhibitor of peptidylarginine deiminases (PADs), a group of calcium-dependent enzymes, which play critical roles in a number of pathologies, including autoimmune and neurodegenerative diseases, as well as cancer. While Cl-amidine application has been assessed in a number of in vitro and in vivo models; methods of controlled release delivery remain to be investigated. P(3HB) microspheres have proven to be an effective delivery system for several compounds applied in antimicrobial, wound healing, cancer, and cardiovascular and regenerative disease models. In the current study, P(3HB) microspheres with encapsulated Cl-amidine were produced in a size ranging from ~4-5 µm and characterized for surface morphology, porosity, hydrophobicity and protein adsorption, in comparison with empty P(3HB) microspheres. Cl-amidine encapsulation in P(3HB) microspheres was optimized, and these were found to be less hydrophobic, compared with the empty microspheres, and subsequently adsorbed a lower amount of protein on their surface. The release kinetics of Cl-amidine from the microspheres were assessed in vitro and expressed as a function of encapsulation efficiency. There was a burst release of ~50% Cl-amidine in the first 24 h and a zero order release from that point up to 16 days, at which time point ~93% of the drug had been released. As Cl-amidine has been associated with anti-cancer effects, the Cl-amidine encapsulated microspheres were assessed for the inhibition of vascular endothelial growth factor (VEGF) expression in the mammalian breast cancer cell line SK-BR-3, including in the presence of the anti-proliferative drug rapamycin. The cytotoxicity of the combinatorial effect of rapamycin with Cl-amidine encapsulated P(3HB) microspheres was found to be 3.5% more effective within a 24 h period. The cells treated with Cl-amidine encapsulated microspheres alone, were found to have 36.5% reduction in VEGF expression when compared with untreated SK-BR-3 cells. This indicates that controlled release of Cl-amidine from P(3HB) microspheres may be effective in anti-cancer treatment, including in synergy with chemotherapeutic agents. Using controlled drug-delivery of Cl-amidine encapsulated in Poly(3-hydroxybutyrate) microspheres may be a promising novel strategy for application in PAD-associated pathologies.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Inhibidores Enzimáticos/administración & dosificación , Hidroxibutiratos/administración & dosificación , Ornitina/análogos & derivados , Poliésteres/administración & dosificación , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Sistemas de Liberación de Medicamentos , Inhibidores Enzimáticos/química , Femenino , Humanos , Hidroxibutiratos/química , Microesferas , Ornitina/administración & dosificación , Ornitina/química , Poliésteres/química , Desiminasas de la Arginina Proteica/antagonistas & inhibidores , Células Tumorales Cultivadas , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
5.
Nanomedicine ; 12(7): 1919-1929, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27184098

RESUMEN

Targeted delivery of potent, toxic chemotherapy drugs, such as cisplatin, is a significant area of research in cancer treatment. In this study, cisplatin was successfully encapsulated with high efficiency (>70%) in poly (lactic-co-glycolic acid) polymeric nanoparticles by using electrohydrodynamic atomization (EHDA) where applied voltage and solution flow rate as well as the concentration of cisplatin and polymer were varied to control the size of the particles. Thus, nanoparticles were produced with three different drug:polymer ratios (2.5, 5 and 10wt% cisplatin). It was shown that smaller nanoparticles were produced with 10wt% cisplatin. Furthermore, these demonstrated the best sustained release (smallest burst release). By fitting the experimental data with various kinetic models it was concluded that the release is dependent upon the particle morphology and the drug concentration. Thus, these particles have significant potential for cisplatin delivery with controlled dosage and release period that are crucial chemotherapy parameters.


Asunto(s)
Antineoplásicos/administración & dosificación , Cisplatino/administración & dosificación , Sistemas de Liberación de Medicamentos , Nanopartículas , Glicoles , Humanos , Ácido Láctico , Tamaño de la Partícula , Ácido Poliglicólico
6.
J Mater Sci Mater Med ; 27(10): 157, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27620740

RESUMEN

Phosphate-based glasses have been examined in many studies as a potential biomaterial for bone repair because of its degradation properties, which can be controlled and allow the release of various elements to promote osteogenic tissue growth. However most of these experiments studied either tertiary or quaternary glass systems. This study investigated a qinternary system that included titanium dioxide for degradation rate control and zinc that is considered to have a role in bone formation. Zinc and titanium phosphate glass discs of different compositions were melt synthesized and samples of each composition was tested for different physical, chemical and biological characteristics via density measurement, X-ray diffraction, differential thermal analysis, mass loss, ion release, scanning electron microscopy, biocompatibility studies via live/dead assays at three time points (day 1, 4, and 7). The results showed that the glass was amorphous and that the all thermal variables decreased as zinc oxide amount raised, mass loss as well as ion release increased as zinc oxide increased, and the maximum rise was with ZnO15. The cellular studies showed that all the formulation showed similar cytocompatibility properties with MG63 except ZnO15, which displayed cytotoxic properties and this was confirmed also by the scanning electron microscope images. In conclusion, replacing calcium oxide with zinc oxide in proportion less than 10 % can have a positive effect on bone forming cells.


Asunto(s)
Vidrio/química , Ortopedia/métodos , Fosfatos/química , Ingeniería de Tejidos/métodos , Zinc/química , Materiales Biocompatibles/química , Huesos/efectos de los fármacos , Compuestos de Calcio/química , Línea Celular Tumoral , Humanos , Iones , Microscopía Electrónica de Rastreo , Óxidos/química , Propiedades de Superficie , Temperatura , Andamios del Tejido/química , Titanio/química , Difracción de Rayos X , Compuestos de Zinc/química , Óxido de Zinc/química
7.
J Mater Sci Mater Med ; 25(1): 47-53, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24052344

RESUMEN

Hydroxyapatite (HA), fluor-hydroxyapatite (FHA) with varying levels of fluoride ion substitution and fluorapatite (FA) were synthesised by the sol-gel method as possible implant coating or bone-grafting materials. Calcium nitrate and triethyl phosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride were incorporated for the preparation of the FHA and FA sol-gels. After heating and powdering the sol-gels, dissolution behaviour was assessed using ion chromatography to measure Ca(2+) and PO4 (3-) ion release. Biological behaviour was assessed using cellular proliferation with human osteosarcoma cells and alamarBlue™ assay. Statistical analysis was performed with a two way analysis of variance and post hoc testing with a Bonferroni correction. Increasing fluoride substitution into an apatite structure decreased the dissolution rate. Increasing the firing temperature of the HA, FHA and FA sol-gels up to 1,000 °C decreased the dissolution rate. There was significantly higher cellular proliferation on highly substituted FHA and FA than on HA or Titanium. The properties of an implant coating or bone grafting material can be tailored to meet specific requirements by altering the amount of fluoride that is incorporated into the original apatite structure. The dissolution behaviour can further be altered by the temperature at which the sol-gel is fired.


Asunto(s)
Apatitas/química , Materiales Biocompatibles/química , Durapatita/química , Hidroxiapatitas/química , Sustitutos de Huesos/química , Proliferación Celular , Supervivencia Celular , Materiales Biocompatibles Revestidos/química , Cristalización , Geles , Humanos , Ensayo de Materiales , Prótesis e Implantes , Titanio , Células Tumorales Cultivadas
8.
Cureus ; 16(6): e62921, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38912082

RESUMEN

OBJECTIVE: The purpose of this in vitro study was to evaluate the potential remineralization of enamel and dentine erosion lesions after the application of five different toothpastes. METHODOLOGY: A total of 104 enamel and dentine samples were prepared from maxillary third molars. Each group was divided according to the toothpaste application mode (topical = 56; brushing = 48) and the toothpaste used seven topical groups and six brushing groups (n = 8). The groups included negative control (NC), positive control (PC), Sensodyne Pronamel (SP), Regenerate (R), Regenerate with boosting serum (R+), Colgate Duraphat 5000 (CD), and tooth mousse (TM). RESULTS: The statistical analysis showed significant surface microhardness (SMH) change. All enamel groups showed a significant decrease in SMH compared to NC for both application modes. However, no significance was recorded between test groups. Similar results were observed between dentine groups and their relevant controls for both application modes, except brushed R and R+ groups, which were insignificant to their NC. For topical groups, TM showed a significant increase in SMH. While R and R+ showed lower loss than SP and CD. CONCLUSIONS: All tested agents offered a degree of remineralization in both enamel and dentine with no significant difference between agents in enamel groups while R, R+, and TM offered better results in dentine groups. CLINICAL SIGNIFICANCE:  For dentine groups, similar findings were observed with superior tooth surface protection with the application of TM over other agents. Tooth surface remineralization was achieved when agents were either applied topically or brushed over the surface.

9.
J Biomed Mater Res B Appl Biomater ; 112(7): e35441, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38923274

RESUMEN

An ideal wound dressing should create a healing environment that relieves pain, protects against infections, maintains moisture, removes debris, and speeds up wound closure and repair. However, conventional options like gauze often fall short in fulfilling these requirements, especially for chronic or nonhealing wounds. Hence there is a critical need for inventive formulations that offer efficient, cost-effective, and eco-friendly alternatives. This study focuses on assessing the innovative formulation based on a microbial-derived copolymer known as poly(3-hydroxybutyrate-co-4-hydroxybutyrate), P(3HB-co-4HB) bioactive glass and graphene particles, and exploring their biological response in vitro and in vivo-to find the best combination that promotes cell adhesion and enhances wound healing. The formulation optimized at concentration of bioactive glass (1 w/w%) and graphene (0.01 w/w%) showed accelerated degradation and enhanced blood vessel formation. Meanwhile biocompatibility was evaluated using murine osteoblasts, human dermal fibroblasts, and standard cell culture assays, demonstrating no adverse effects after 7 days of culture and well-regulated inflammatory kinetics. Whole thickness skin defect using mice indicated the feasibility of the biocomposites for a faster wound closure and reduced inflammation. Overall, this biocomposite appears promising as an ideal wound dressing material and positively influencing wound healing rates.


Asunto(s)
Grafito , Cicatrización de Heridas , Animales , Grafito/química , Grafito/farmacología , Ratones , Humanos , Cicatrización de Heridas/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/citología , Poliésteres/química , Ensayo de Materiales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Vidrio/química , Osteoblastos/metabolismo , Osteoblastos/citología , Regeneración
10.
J Mater Sci Mater Med ; 24(2): 281-94, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23183961

RESUMEN

Biocompatible and biodegradable polyurethanes were prepared with fixed aliphatic diisocyanate level and varying ratios of isosorbide, and PCL diol via a simple one-shot polymerization without a catalyst. The successful synthesis of the polyurethanes was confirmed by gel permeation chromatography, (1)H-nuclear magnetic resonance and Fourier transform-infrared spectroscopies and the thermal properties were determined by differential scanning calorimetry and showed glass transition temperatures of around 30-35 °C. The degradation tests were performed at 37 °C in phosphate buffer solution (approx. pH 7.3) and showed a mass loss of around 5 % after 12 weeks, except for the polymer with the highest isosorbide content which showed an initial rapid mass loss. The in vitro cytocompatibility test results following culture of osteoblasts on the polymer surface showed that relative cell number on all of the polyurethane films after 5 days of cultured on polymer films was lower compared to the proliferation rate on the optimized tissue culture plastic. These polymers offer significant promise due to the simplicity of the synthesis and the controlled degradation.


Asunto(s)
Isosorbida/química , Poliésteres/química , Poliuretanos/síntesis química , Implantes Absorbibles , Animales , Catálisis , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ensayo de Materiales , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/fisiología , Modelos Biológicos , Concentración Osmolar , Fenómenos Físicos , Poliuretanos/química , Ratas
11.
J Mater Sci Mater Med ; 24(1): 199-210, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23053816

RESUMEN

The hypothesis for this study was that there is no difference in mesenchymal stem cells (MSCs) proliferation and osteogenic differentiation between calcium-phosphate (CaP) coatings with different crystal size deposited on different topographic surfaces of metal discs. Polished (P) and sand-blasted (SB) tantalum and TiAl6V4 discs were CaP coated by three methods-biomimetic (BioM), electrochemical at 20 mA/cm(2) and at 6.5 mA/cm(2)-and cultured with MSCs. At days 4, 7 and 14, cell proliferation-alamarBlue(®) activity and DNA quantification-and differentiation down the osteogenic lineage-ALP activity normalised per amount of DNA and SEM (morphology)-were analysed. Results showed that MSCs proliferated more when cultured on the nano-sized BioM coatings compared to uncoated and electrochemically coated discs. MSCs also proliferated more on P surfaces than on SB and or electrochemical coatings. All the coatings induced osteogenic differentiation, which was greater on electrochemical coatings and SB discs.


Asunto(s)
Biomimética , Diferenciación Celular , Proliferación Celular , Materiales Biocompatibles Revestidos , Técnicas Electroquímicas , Células Madre Mesenquimatosas/citología , Fosfatasa Alcalina/metabolismo , Animales , Fosfatos de Calcio , ADN/metabolismo , Microscopía Electrónica de Rastreo , Ovinos
12.
Pharmaceutics ; 15(4)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37111558

RESUMEN

This study aimed to investigate the impact of different viscosities of silicone oil on the physicochemical, pre-clinical usability, and biological properties of a sodium iodide paste. Six different paste groups were created by mixing therapeutic molecules, sodium iodide (D30) and iodoform (I30), with calcium hydroxide and one of the three different viscosities of silicone oil (high (H), medium (M), and low (L)). The study evaluated the performance of these groups, including I30H, I30M, I30L, D30H, D30M, and D30L, using multiple parameters such as flow, film thickness, pH, viscosity, and injectability, with statistical analysis (p < 0.05). Remarkably, the D30L group demonstrated superior outcomes compared to the conventional iodoform counterpart, including a significant reduction in osteoclast formation, as examined through TRAP, c-FOS, NFATc1, and Cathepsin K (p < 0.05). Additionally, mRNA sequencing showed that the I30L group exhibited increased expression of inflammatory genes with upregulated cytokines compared to the D30L group. These findings suggest that the optimized viscosity of the sodium iodide paste (D30L) may lead to clinically favorable outcomes, such as slower root resorption, when used in primary teeth. Overall, the results of this study suggest that the D30L group shows the most satisfactory outcomes, which may be a promising root-filling material that could replace conventional iodoform-based pastes.

13.
Pharmaceutics ; 15(6)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37376149

RESUMEN

Calcium silicate-based cement (CSC) is a pharmaceutical agent that is widely used in dentistry. This bioactive material is used for vital pulp treatment due to its excellent biocompatibility, sealing ability, and antibacterial activity. Its drawbacks include a long setting time and poor maneuverability. Hence, the clinical properties of CSC have recently been improved to decrease its setting time. Despite the widespread clinical usage of CSC, there is no research comparing recently developed CSCs. Therefore, the purpose of this study is to compare the physicochemical, biological, and antibacterial properties of four commercial CSCs: two powder-liquid mix types (RetroMTA® [RETM]; Endocem® MTA Zr [ECZR]) and two premixed types (Well-Root™ PT [WRPT]; Endocem® MTA premixed [ECPR]). Each sample was prepared using circular Teflon molds, and tests were conducted after 24 h of setting. The premixed CSCs exhibited a more uniform and less rough surface, higher flowability, and lower film thickness than the powder-liquid mix CSCs. In the pH test, all CSCs showed values between 11.5 and 12.5. In the biological test, cells exposed to ECZR at a concentration of 25% showed greater cell viability, but none of the samples showed a significant difference at low concentration (p > 0.05). Alkaline phosphatase staining revealed that cells exposed to ECZR underwent more odontoblast differentiation than the cells exposed to the other materials; however, no significant difference was observed at a concentration of 12.5% (p > 0.05). In the antibacterial test, the premixed CSCs showed better results than the powder-liquid mix CSCs, and ECPR yielded the best results, followed by WRPT. In conclusion, the premixed CSCs showed improved physical properties, and of the premixed types, ECPR exhibited the highest antibacterial properties. For biological properties, none of these materials showed significant differences at 12.5% dilution. Therefore, ECPR may be a promising material with high antibacterial activity among the four CSCs, but further investigation is needed for clinical situations.

14.
Phys Chem Chem Phys ; 14(45): 15807-15, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23085992

RESUMEN

Melt quenched silicate glasses containing calcium, phosphorus and alkali metals have the ability to promote bone regeneration and to fuse to living bone. Of these glasses 45S5 Bioglass® is the most widely used being sold in over 35 countries as a bone graft product for medical and dental applications; particulate 45S5 is also incorporated into toothpastes to help remineralize the surface of teeth. Recently it has been suggested that adding titanium dioxide can increase the bioactivity of these materials. This work investigates the structural consequences of incorporating 4 mol% TiO(2) into Bioglass® using isotopic substitution (of the Ti) applied to neutron diffraction and X-ray Absorption Near Edge Structure (XANES). We present the first isotopic substitution data applied to melt quench derived Bioglass or its derivatives. Results show that titanium is on average surrounded by 5.2(1) nearest neighbor oxygen atoms. This implies an upper limit of 40% four-fold coordinated titanium and shows that the network connectivity is reduced from 2.11 to 1.97 for small quantities of titanium. Titanium XANES micro-fluorescence confirms the titanium environment is homogenous on the micron length scale within these glasses. Solid state magic angle spinning (MAS) NMR confirms the network connectivity model proposed. Furthermore, the results show the intermediate range order containing Na-O, Ca-O, O-P-O and O-Si-O correlations are unaffected by the addition of small quantities of TiO(2) into these systems.


Asunto(s)
Titanio/química , Cerámica/química , Isótopos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Difracción de Neutrones , Silicio , Espectroscopía de Absorción de Rayos X
15.
Biomater Adv ; 139: 213025, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35882118

RESUMEN

To overcome the deficiency of the antimicrobial effect of polymer, zinc oxide nanoparticles have been widely utilized as advanced nanofillers due to their antimicrobial and photocatalytic activity. However, the underlying antimicrobial mechanism has not been fully understood apart from topological and physical characteristics. In this study, we prepared zinc oxide nanoparticles-based acrylic resin to explore its antimicrobial mechanism under controlled mechanophysical conditions by using silane-treated zinc oxide nanoflakes (S-ZnNFs). S-ZnNFs incorporated acrylic resin (poly(methyl methacrylate), PMMA) composites up to 2 wt% were selected based on comparable mechanophysical properties (e.g., roughness, wettability, strength and hardness), possibly affecting antimicrobial properties beyond the zinc oxide nanoparticle effect, to bare PMMA. Antimicrobial adhesion results were still observed in 2 wt% S-ZnNFs incorporated PMMA using Candida albicans (C. albicans), one of the fungal infection species. In order to confirm the antimicrobial effects by photocatalysis, we pre-exposed the UV light on 2 wt% S-ZnNF composites before cell seeding, revealing synergetic antimicrobial effect via additional reactive oxygen species (ROS) generation to C. albicans over zinc oxide nanoparticle-induced one. RNA-seq analysis revealed distinguished cellular responses between zinc oxide nanoparticles and UV-mediated photocatalytic effect, but both linked to generation of intracellular ROS. Thus, the above data suggest that induction of high intracellular ROS of C. albicans was the main antimicrobial mechanism under controlled mechanophysical parameters and synergetic ROS accumulation can be induced by photocatalysis, recapitulating a promising use of a S-ZnNFs or possibly zinc oxide nanoparticles as intracellular-ROS-generating antimicrobial nanofillers in acrylic composite for biomedical applications.


Asunto(s)
Antiinfecciosos , Óxido de Zinc , Resinas Acrílicas/farmacología , Antiinfecciosos/farmacología , Candida albicans , Polimetil Metacrilato/farmacología , Especies Reactivas de Oxígeno/farmacología , Óxido de Zinc/farmacología
16.
Dent Mater ; 38(2): 363-375, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34933758

RESUMEN

OBJECTIVE: This study was investigated the mechanophysical properties of zinc phosphate cement (ZPC) with or without the copper doped bioglass nanoparticles (Cu-BGn) and their biological effect on dental pulp human cells and bacteria. MATERIALS AND METHODS: Cu-BGn were synthesized and characterized firstly and then, the experimental (Cu-ZPC) and control (ZPC) samples were fabricated with similar sizes and/or dimensions (diameter: 4 mm and height: 6 mm) based on the International Organization of Standards (ISO). Specifically, various concentrations of Cu-BGn were tested, and Cu-BGn concentration was optimized at 2.5 wt% based on the film thickness and overall setting time. Next, we evaluated the mechanophysical properties such as compressive strength, elastic modulus, hardness, and surface roughness. Furthermore, the biological behaviors including cell viability and odontoblastic differentiation by using dental pulp human cells as well as antibacterial properties were investigated on the Cu-ZPC. All data were analyzed statistically using SPSS® Statistics 20 (IBM®, USA). p < 0.05 (*) was considered significant, and 'NS' represents nonsignificant. RESULTS: Cu-BGn was obtained via a sol-gel method and added onto the ZPC for fabricating a Cu-ZPC composite and for comparison, the Cu-free-ZPC was used as a control. The film thickness (≤ 25 µm) and overall setting time (2.5-8 min) were investigated and the mechanophysical properties showed no significance ('NS') between Cu-ZPC and bare ZPC. However, cell viability and odontoblastic differentiation, alkaline phosphate (ALP) activity and alizarin red S (ARS) staining were highly stimulated in the extracts from the Cu-ZPC group compared to the ZPC group. Additionally, the antibacterial test showed that the Cu-ZPC extracts were more effective than the ZPC extracts (p < 0.05). SIGNIFICANCE: Cu-ZPC showed adequate mechanophysical properties (compressive strength, hardness, and surface roughness) and enhanced odontoblastic differentiation as well as antibacterial properties compared to the ZPC-only group. Based on the findings, the fabricated Cu-ZPC might have the potential for use in the field of dental medicine and clinical applications.


Asunto(s)
Cobre , Nanopartículas , Cerámica/farmacología , Cobre/farmacología , Humanos , Ensayo de Materiales , Cemento de Fosfato de Zinc
17.
Sci Rep ; 12(1): 16977, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36216955

RESUMEN

At a time of unpredictable challenges for health, one trend is certain: there is an exceedingly high demand for functional implants, particularly bone grafts. This has encouraged the emergence of bone tissue engineering substitutes as an alternative method to conventional bone grafts. However, the current approaches in the field face several limitations that have prevented the ultimate translation into clinical settings. As a result, many attempts have been made to fabricate synthetic bone implants that can offer suitable biological and mechanical properties.Light curable methacrylate-based polymers have ideal properties for bone repair. These materials are also suitable for 3D printing which can be applicable for restoration of both function and aesthetics. The main objective of this research was to investigate the role of calcium phosphate (CaP) incorporation in a mechanically stable, biologically functional and 3D printable polymer for the reconstruction of complex craniofacial defects. The experimental work initially involved the synthesis of (((((((((((3R,3aR,6S,6aR)- hexahydrofuro[3,2-b]furan-3,6-diyl)bis(oxy))bis(ethane-2,1- 48 diyl))bis(oxy))bis(carbonyl))bis(azanediyl))bis(3,3,5-trimethylcyclohexane-5,1- 49 diyl))bis(azanediyl))bis(carbonyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) referred to as CSMA and fabrication of composite discs via a Digital Light Printing (DLP) method. The flow behaviour of the polymer as a function of CaP addition, surface remineralisation potential, in vitro cell culture, using MC3T3 and Adipose-Derived Mesenchymal Stem Cells (ADSCs) and ex ovo angiogenic response was assessed. Finally, in vivo studies were carried out to investigate neo-bone formation at 4- and 8-weeks post-implantation. Quantitative micro-CT and histological evaluation did not show a higher rate of bone formation in CaP filled CSMA composites compared to CSMA itself. Therefore, such polymeric systems hold promising features by allowing more flexibility in designing a 3D printed scaffold targeted at the reconstruction of maxillofacial defects.


Asunto(s)
Sustitutos de Huesos , Osteogénesis , Materiales Biocompatibles/farmacología , Sustitutos de Huesos/farmacología , Fosfatos de Calcio/farmacología , Etano , Furanos , Metacrilatos/farmacología , Polímeros , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido
18.
Pharmaceutics ; 14(9)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36145651

RESUMEN

Recently, bioactive glass nanoparticles (BGns) have been acknowledged for their ability to promote interactions with the periapical tissue and enhance tissue regeneration by releasing therapeutic ions. However, there have been no studies on calcium silicate sealers with bioactive glass nanoparticle (BGn) additives. In the present study, a premixed calcium silicate root canal sealer reinforced with BGn (pre-mixed-RCS@BGn) was developed and its physicochemical features and biological effects were analyzed. Three specimens were in the trial: 0%, 0.5%, and 1% bioactive glass nanoparticles (BGns) were gradually added to the premixed type of calcium silicate-based sealer (pre-mixed-RCS). To elucidate the surface properties, scanning electron microscopy, X-ray diffraction, and energy-dispersive spectroscopy were used and flowability, setting time, solubility, and radiopacity were analyzed to evaluate the physical properties. Chemical properties were investigated by water contact angle, pH change, and ion release measurements. The antibacterial effects of the bioactive set sealers were tested with Enterococcus faecalis and the viability of human bone marrow-derived mesenchymal stem cells (hMSCs) with this biomaterial was examined. In addition, osteogenic differentiation was highly stimulated, which was confirmed by ALP (Alkaline phosphatase) activity and the ARS (Alizarin red S) staining of hMSCs. The pre-mixed-RCS@BGn satisfied the ISO standards for root canal sealers and maintained antimicrobial activity. Moreover, pre-mixed-RCS@BGn with more BGns turned out to have less cytotoxicity than pre-mixed-RCS without BGns while promoting osteogenic differentiation, mainly due to calcium and silicon ion release. Our results suggest that BGns enhance the biological properties of this calcium silicate-based sealer and that the newly introduced pre-mixed-RCS@BGn has the capability to be applied in dental procedures as a root canal sealer. Further studies focusing more on the biocompatibility of pre-mixed-RCS@BGn should be performed to investigate in vivo systems, including pulp tissue.

19.
Pharmaceutics ; 14(6)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35745710

RESUMEN

Silver diamine fluoride (SDF) is an outstanding dental material for arresting and preventing caries, but some drawbacks, such as high flowability due to low viscosity and cytotoxicity to the pulp, have been reported. To overcome these problems, copper-doped bioactive glass nanoparticles (CuBGns) were combined with SDF. After synthesis, CuBGns were examined by physical analysis and added in SDF at different weight/volume% (SDF@CuBGn). After assessing physical properties (viscosity and flowability) of SDF@CuBGn, physicochemical properties (morphology before and after simulated body fluid (SBF) immersion and ion release) of SDF@CuBGn-applied hydroxyapatite (HA) discs were evaluated. Biological properties were further evaluated by cytotoxicity test to pulp stem cells and antibacterial effect on cariogenic organisms (Streptococcus mutans and Staphylococcus aureus). Combining CuBGns in SDF increased the viscosity up to 3 times while lowering the flowability. More CuBGns and functional elements in SDF (Ag and F) were deposited on the HA substrate, even after SBF immersion test for 14 days, and they showed higher Cu, Ca, and Si release without changing F and Ag release. Cell viability test suggested lower cytotoxicity in SDF@CuBGn-applied HA, while CuBGns in SDF boosted antibacterial effect against S. aureus, ~27% in diameter of agar diffusion test. In conclusion, the addition of CuBGn to SDF enhances viscosity, Ag and F deposition, and antibacterial effects while reducing cell toxicity, highlighting the role of bioactive CuBGns for regulating physical and biological effects of dental materials.

20.
Biomacromolecules ; 12(6): 2126-36, 2011 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-21561067

RESUMEN

Pseudomonas mendocina was found to produce a unique homopolymer of poly(3-hydroxyoctanoate), P(3HO), rather than a copolymer, when grown on sodium octanoate as the sole carbon source. Although this polymer has been produced by other organisms, interestingly this is the first time an absolute homopolymer has been produced by a wild type organism. In addition, a detailed study on the effects of different extraction methods on the yield, molecular weight, thermal properties, and lipopolysaccharide content of P(3HO) has been carried out. The organism was able to accumulate P(3HO) up to 31.38% of its dry cell weight within 48 h in mineral salt medium. Characterization of the monomer was carried out using FTIR, GC-MS, (13)C, (1)H, and HSQC NMR spectroscopy. The polymer had a crystallinity of 37.5%, Young's modulus value of 11.6 MPa and contact angle of 77.3°. Microstructural studies of solvent cast polymer films revealed a smooth surface topography with a root-mean-square roughness value of 0.238 µm.


Asunto(s)
Materiales Biocompatibles/química , Poliésteres/aislamiento & purificación , Polihidroxialcanoatos/aislamiento & purificación , Pseudomonas mendocina/química , Cristalización , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Módulo de Elasticidad , Cromatografía de Gases y Espectrometría de Masas , Lipopolisacáridos/análisis , Lipopolisacáridos/biosíntesis , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Rastreo , Peso Molecular , Poliésteres/química , Poliésteres/metabolismo , Polihidroxialcanoatos/biosíntesis , Polihidroxialcanoatos/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas mendocina/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA