Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Control Release ; 266: 109-118, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-28943194

RESUMEN

In this study, we investigated the potential of intradermal delivery of nanoparticulate vaccines to modulate the immune response of protein antigen using hollow microneedles. Four types of nanoparticles covering a broad range of physiochemical parameters, namely poly (lactic-co-glycolic) (PLGA) nanoparticles, liposomes, mesoporous silica nanoparticles (MSNs) and gelatin nanoparticles (GNPs) were compared. The developed nanoparticles were loaded with a model antigen (ovalbumin (OVA)) with and without an adjuvant (poly(I:C)), followed by the characterization of size, zeta potential, morphology, and loading and release of antigen and adjuvant. An in-house developed hollow-microneedle applicator was used to inject nanoparticle suspensions precisely into murine skin at a depth of about 120µm. OVA/poly(I:C)-loaded nanoparticles and OVA/poly(I:C) solution elicited similarly strong total IgG and IgG1 responses. However, the co-encapsulation of OVA and poly(I:C) in nanoparticles significantly increased the IgG2a response compared to OVA/poly(I:C) solution. PLGA nanoparticles and liposomes induced stronger IgG2a responses than MSNs and GNPs, correlating with sustained release of the antigen and adjuvant and a smaller nanoparticle size. When examining cellular responses, the highest CD8+ and CD4+ T cell responses were induced by OVA/poly(I:C)-loaded liposomes. In conclusion, the applicator controlled hollow microneedle delivery is an excellent method for intradermal injection of nanoparticle vaccines, allowing selection of optimal nanoparticle formulations for humoral and cellular immune responses.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Antígenos/administración & dosificación , Nanopartículas/administración & dosificación , Agujas , Ovalbúmina/administración & dosificación , Poli I-C/administración & dosificación , Vacunación/instrumentación , Animales , Antígenos/química , Liberación de Fármacos , Femenino , Inyecciones Intradérmicas , Ácido Láctico/administración & dosificación , Ácido Láctico/química , Liposomas , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microinyecciones , Nanopartículas/química , Ovalbúmina/química , Poli I-C/química , Ácido Poliglicólico/administración & dosificación , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Vacunación/métodos
2.
Science ; 343(6176): 1260-3, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24626930

RESUMEN

Complement activation by antibodies bound to pathogens, tumors, and self antigens is a critical feature of natural immune defense, a number of disease processes, and immunotherapies. How antibodies activate the complement cascade, however, is poorly understood. We found that specific noncovalent interactions between Fc segments of immunoglobulin G (IgG) antibodies resulted in the formation of ordered antibody hexamers after antigen binding on cells. These hexamers recruited and activated C1, the first component of complement, thereby triggering the complement cascade. The interactions between neighboring Fc segments could be manipulated to block, reconstitute, and enhance complement activation and killing of target cells, using all four human IgG subclasses. We offer a general model for understanding antibody-mediated complement activation and the design of antibody therapeutics with enhanced efficacy.


Asunto(s)
Membrana Celular/inmunología , Activación de Complemento , Complemento C1/inmunología , Inmunoglobulina G/química , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Inmunoglobulina G/inmunología , Liposomas , Conformación Proteica , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA