Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Am J Hum Genet ; 107(6): 1044-1061, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33159882

RESUMEN

Heparan sulfate belongs to the group of glycosaminoglycans (GAGs), highly sulfated linear polysaccharides. Heparan sulfate 2-O-sulfotransferase 1 (HS2ST1) is one of several specialized enzymes required for heparan sulfate synthesis and catalyzes the transfer of the sulfate groups to the sugar moiety of heparan sulfate. We report bi-allelic pathogenic variants in HS2ST1 in four individuals from three unrelated families. Affected individuals showed facial dysmorphism with coarse face, upslanted palpebral fissures, broad nasal tip, and wide mouth, developmental delay and/or intellectual disability, corpus callosum agenesis or hypoplasia, flexion contractures, brachydactyly of hands and feet with broad fingertips and toes, and uni- or bilateral renal agenesis in three individuals. HS2ST1 variants cause a reduction in HS2ST1 mRNA and decreased or absent heparan sulfate 2-O-sulfotransferase 1 in two of three fibroblast cell lines derived from affected individuals. The heparan sulfate synthesized by the individual 1 cell line lacks 2-O-sulfated domains but had an increase in N- and 6-O-sulfated domains demonstrating functional impairment of the HS2ST1. As heparan sulfate modulates FGF-mediated signaling, we found a significantly decreased activation of the MAP kinases ERK1/2 in FGF-2-stimulated cell lines of affected individuals that could be restored by addition of heparin, a GAG similar to heparan sulfate. Focal adhesions in FGF-2-stimulated fibroblasts of affected individuals concentrated at the cell periphery. Our data demonstrate that a heparan sulfate synthesis deficit causes a recognizable syndrome and emphasize a role for 2-O-sulfated heparan sulfate in human neuronal, skeletal, and renal development.


Asunto(s)
Huesos/anomalías , Cuerpo Calloso/patología , Discapacidades del Desarrollo/genética , Riñón/anomalías , Sulfotransferasas/genética , Adolescente , Alelos , Biopsia , Niño , Preescolar , Matriz Extracelular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Salud de la Familia , Femenino , Fibroblastos/metabolismo , Variación Genética , Heparitina Sulfato/metabolismo , Humanos , Ácido Idurónico/farmacología , Recién Nacido , Masculino , Linaje , Fenotipo , Síndrome , Anomalías Urogenitales/genética
2.
Am J Hum Genet ; 104(6): 1139-1157, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31155282

RESUMEN

Zimmermann-Laband syndrome (ZLS) is characterized by coarse facial features with gingival enlargement, intellectual disability (ID), hypertrichosis, and hypoplasia or aplasia of nails and terminal phalanges. De novo missense mutations in KCNH1 and KCNK4, encoding K+ channels, have been identified in subjects with ZLS and ZLS-like phenotype, respectively. We report de novo missense variants in KCNN3 in three individuals with typical clinical features of ZLS. KCNN3 (SK3/KCa2.3) constitutes one of three members of the small-conductance Ca2+-activated K+ (SK) channels that are part of a multiprotein complex consisting of the pore-forming channel subunits, the constitutively bound Ca2+ sensor calmodulin, protein kinase CK2, and protein phosphatase 2A. CK2 modulates Ca2+ sensitivity of the channels by phosphorylating SK-bound calmodulin. Patch-clamp whole-cell recordings of KCNN3 channel-expressing CHO cells demonstrated that disease-associated mutations result in gain of function of the mutant channels, characterized by increased Ca2+ sensitivity leading to faster and more complete activation of KCNN3 mutant channels. Pretreatment of cells with the CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole revealed basal inhibition of wild-type and mutant KCNN3 channels by CK2. Analogous experiments with the KCNN3 p.Val450Leu mutant previously identified in a family with portal hypertension indicated basal constitutive channel activity and thus a different gain-of-function mechanism compared to the ZLS-associated mutant channels. With the report on de novo KCNK4 mutations in subjects with facial dysmorphism, hypertrichosis, epilepsy, ID, and gingival overgrowth, we propose to combine the phenotypes caused by mutations in KCNH1, KCNK4, and KCNN3 in a group of neurological potassium channelopathies caused by an increase in K+ conductance.


Asunto(s)
Anomalías Múltiples/etiología , Anomalías Craneofaciales/etiología , Fibromatosis Gingival/etiología , Mutación con Ganancia de Función , Deformidades Congénitas de la Mano/etiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Anomalías Múltiples/patología , Adulto , Secuencia de Aminoácidos , Animales , Células CHO , Niño , Preescolar , Anomalías Craneofaciales/patología , Cricetinae , Cricetulus , Femenino , Fibromatosis Gingival/patología , Deformidades Congénitas de la Mano/patología , Humanos , Activación del Canal Iónico , Masculino , Persona de Mediana Edad , Fenotipo , Conformación Proteica , Homología de Secuencia , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/química , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
3.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36077086

RESUMEN

Dominant KCNQ1 variants are well-known for underlying cardiac arrhythmia syndromes. The two heterozygous KCNQ1 missense variants, R116L and P369L, cause an allelic disorder characterized by pituitary hormone deficiency and maternally inherited gingival fibromatosis. Increased K+ conductance upon co-expression of KCNQ1 mutant channels with the beta subunit KCNE2 is suggested to underlie the phenotype; however, the reason for KCNQ1-KCNE2 (Q1E2) channel gain-of-function is unknown. We aimed to discover the genetic defect in a single individual and three family members with gingival overgrowth and identified the KCNQ1 variants P369L and V185M, respectively. Patch-clamp experiments demonstrated increased constitutive K+ conductance of V185M-Q1E2 channels, confirming the pathogenicity of the novel variant. To gain insight into the pathomechanism, we examined all three disease-causing KCNQ1 mutants. Manipulation of the intracellular Ca2+ concentration prior to and during whole-cell recordings identified an impaired Ca2+ sensitivity of the mutant KCNQ1 channels. With low Ca2+, wild-type KCNQ1 currents were efficiently reduced and exhibited a pre-pulse-dependent cross-over of current traces and a high-voltage-activated component. These features were absent in mutant KCNQ1 channels and in wild-type channels co-expressed with calmodulin and exposed to high intracellular Ca2+. Moreover, co-expression of calmodulin with wild-type Q1E2 channels and loading the cells with high Ca2+ drastically increased Q1E2 current amplitudes, suggesting that KCNE2 normally limits the resting Q1E2 conductance by an increased demand for calcified calmodulin to achieve effective channel opening. Our data link impaired Ca2+ sensitivity of the KCNQ1 mutants R116L, V185M and P369L to Q1E2 gain-of-function that is associated with a particular KCNQ1 channelopathy.


Asunto(s)
Canal de Potasio KCNQ1 , Canales de Potasio con Entrada de Voltaje , Calmodulina/genética , Mutación con Ganancia de Función , Canal de Potasio KCNQ1/genética , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/genética
4.
Hum Mutat ; 41(9): 1645-1661, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32623794

RESUMEN

The family of Tre2-Bub2-Cdc16 (TBC)-domain containing GTPase activating proteins (RABGAPs) is not only known as key regulatorof RAB GTPase activity but also has GAP-independent functions. Rab GTPases are implicated in membrane trafficking pathways, such as vesicular trafficking. We report biallelic loss-of-function variants in TBC1D2B, encoding a member of the TBC/RABGAP family with yet unknown function, as the underlying cause of cognitive impairment, seizures, and/or gingival overgrowth in three individuals from unrelated families. TBC1D2B messenger RNA amount was drastically reduced, and the protein was absent in fibroblasts of two patients. In immunofluorescence analysis, ectopically expressed TBC1D2B colocalized with vesicles positive for RAB5, a small GTPase orchestrating early endocytic vesicle trafficking. In two independent TBC1D2B CRISPR/Cas9 knockout HeLa cell lines that serve as cellular model of TBC1D2B deficiency, epidermal growth factor internalization was significantly reduced compared with the parental HeLa cell line suggesting a role of TBC1D2B in early endocytosis. Serum deprivation of TBC1D2B-deficient HeLa cell lines caused a decrease in cell viability and an increase in apoptosis. Our data reveal that loss of TBC1D2B causes a neurodevelopmental disorder with gingival overgrowth, possibly by deficits in vesicle trafficking and/or cell survival.


Asunto(s)
Proteínas Activadoras de GTPasa/genética , Sobrecrecimiento Gingival/genética , Trastornos del Neurodesarrollo/genética , Convulsiones/genética , Adulto , Niño , Endocitosis , Femenino , Células HeLa , Humanos , Lactante , Mutación con Pérdida de Función , Masculino , Linaje , Secuenciación del Exoma , Adulto Joven
5.
Am J Dermatopathol ; 42(9): 653-661, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31789838

RESUMEN

Goltz-Gorlin syndrome (GGS) (focal dermal hypoplasia) is a very rare developmental disorder affecting ectodermal and mesodermal structures. The syndrome is inherited in an X-linked manner, with the majority of affected individuals being female. We report the case of a 51-year-old man presenting with congenital skin lesions, syndactyly, facial and thoracic asymmetry, inguinal and laryngeal papillomas, cryptorchidism, polythelia, and dental anomalies. Molecular genetic analysis confirmed the clinically suspected diagnosis of GGS by detecting a known pathogenic mutation in the PORCN gene, c.502G>A [p.(Gly168Arg)] in the mosaic state. Histopathological examinations of skin biopsies of affected individuals typically show focal dermal hypoplasia and fat herniation; despite numerous skin biopsies, these characteristics were not found in the patient involved. Instead, we observed a notable reduction and fragmentation of the elastic fibers in the upper dermis. A systematic literature review regarding the histopathological presence or absence of dermal hypoplasia and/or information on elastic fibers revealed 240 histopathological descriptions of 173 individuals. Absence of dermal hypoplasia was found in 21 biopsies (8.8%). Information on elastic fibers was given in 47 cases (19.6%), showing decrease/absence in 31 cases and fragmentation of elastic fibers in 11 cases. Therefore, the histopathological absence of dermal hypoplasia does not exclude the diagnosis of the GGS. Decrease and fragmentation of elastic fibers may represent new histopathological clues to the diagnosis of this rare syndrome. At the same time, GGS should be included in the histopathological differential diagnoses of elastolytic disorders.


Asunto(s)
Dermis/patología , Tejido Elástico/patología , Hipoplasia Dérmica Focal/patología , Aciltransferasas , Adolescente , Adulto , Anciano , Biopsia , Niño , Preescolar , Análisis Mutacional de ADN , Diagnóstico Diferencial , Femenino , Hipoplasia Dérmica Focal/genética , Predisposición Genética a la Enfermedad , Humanos , Lactante , Masculino , Proteínas de la Membrana , Persona de Mediana Edad , Mutación , Fenotipo , Valor Predictivo de las Pruebas , Adulto Joven
6.
Eur J Hum Genet ; 32(5): 558-566, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38374468

RESUMEN

Biallelic loss-of-function variants in TBC1D2B have been reported in five subjects with cognitive impairment and seizures with or without gingival overgrowth. TBC1D2B belongs to the family of Tre2-Bub2-Cdc16 (TBC)-domain containing RAB-specific GTPase activating proteins (TBC/RABGAPs). Here, we report five new subjects with biallelic TBC1D2B variants, including two siblings, and delineate the molecular and clinical features in the ten subjects known to date. One of the newly reported subjects was compound heterozygous for the TBC1D2B variants c.2584C>T; p.(Arg862Cys) and c.2758C>T; p.(Arg920*). In subject-derived fibroblasts, TBC1D2B mRNA level was similar to control cells, while the TBC1D2B protein amount was reduced by about half. In one of two siblings with a novel c.360+1G>T splice site variant, TBC1D2B transcript analysis revealed aberrantly spliced mRNAs and a drastically reduced TBC1D2B mRNA level in leukocytes. The molecular spectrum included 12 different TBC1D2B variants: seven nonsense, three frameshifts, one splice site, and one missense variant. Out of ten subjects, three had fibrous dysplasia of the mandible, two of which were diagnosed as cherubism. Most subjects developed gingival overgrowth. Half of the subjects had developmental delay. Seizures occurred in 80% of the subjects. Six subjects showed a progressive disease with mental deterioration. Brain imaging revealed cerebral and/or cerebellar atrophy with or without lateral ventricle dilatation. The TBC1D2B disorder is a progressive neurological disease with gingival overgrowth and abnormal mandible morphology. As TBC1D2B has been shown to positively regulate autophagy, defects in autophagy and the endolysosomal system could be associated with neuronal dysfunction and the neurodegenerative disease in the affected individuals.


Asunto(s)
Proteínas Activadoras de GTPasa , Sobrecrecimiento Gingival , Adulto , Femenino , Humanos , Sobrecrecimiento Gingival/genética , Sobrecrecimiento Gingival/patología , Proteínas Activadoras de GTPasa/genética , Mutación con Pérdida de Función , Linaje , Convulsiones/genética , Convulsiones/patología
7.
Eur J Hum Genet ; 29(9): 1384-1395, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33594261

RESUMEN

Decreased or increased activity of potassium channels caused by loss-of-function and gain-of-function (GOF) variants in the corresponding genes, respectively, underlies a broad spectrum of human disorders affecting the central nervous system, heart, kidney, and other organs. While the association of epilepsy and intellectual disability (ID) with variants affecting function in genes encoding potassium channels is well known, GOF missense variants in K+ channel encoding genes in individuals with syndromic developmental disorders have only recently been recognized. These syndromic phenotypes include Zimmermann-Laband and Temple-Baraitser syndromes, caused by dominant variants in KCNH1, FHEIG syndrome due to dominant variants in KCNK4, and the clinical picture associated with dominant variants in KCNN3. Here we review the presentation of these individuals, including five newly reported with variants in KCNH1 and three additional individuals with KCNN3 variants, all variants likely affecting function. There is notable overlap in the phenotypic findings of these syndromes associated with dominant KCNN3, KCNH1, and KCNK4 variants, sharing developmental delay and/or ID, coarse facial features, gingival enlargement, distal digital hypoplasia, and hypertrichosis. We suggest to combine the phenotypes and define a new subgroup of potassium channelopathies caused by increased K+ conductance, referred to as syndromic neurodevelopmental K+ channelopathies due to dominant variants in KCNH1, KCNK4, or KCNN3.


Asunto(s)
Anomalías Múltiples/genética , Canalopatías/genética , Anomalías Craneofaciales/genética , Canales de Potasio Éter-A-Go-Go/genética , Fibromatosis Gingival/genética , Mutación con Ganancia de Función , Hallux/anomalías , Deformidades Congénitas de la Mano/genética , Discapacidad Intelectual/genética , Uñas Malformadas/genética , Canales de Potasio/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Pulgar/anomalías , Anomalías Múltiples/patología , Adolescente , Adulto , Canalopatías/patología , Niño , Anomalías Craneofaciales/patología , Femenino , Fibromatosis Gingival/patología , Hallux/patología , Deformidades Congénitas de la Mano/patología , Humanos , Discapacidad Intelectual/patología , Masculino , Uñas Malformadas/patología , Fenotipo , Pulgar/patología
8.
Eur J Med Genet ; 63(9): 103996, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32622958

RESUMEN

Cantú syndrome (CS) is a rare developmental disorder characterized by a coarse facial appearance, macrocephaly, hypertrichosis, skeletal and cardiovascular anomalies and caused by heterozygous gain-of-function variants in ABCC9 and KCNJ8, encoding subunits of heterooctameric ATP-sensitive potassium (KATP) channels. CS shows considerable clinical overlap with Zimmermann-Laband syndrome (ZLS), a rare condition with coarse facial features, hypertrichosis, gingival overgrowth, intellectual disability of variable degree, and hypoplasia or aplasia of terminal phalanges and/or nails. ZLS is caused by heterozygous gain-of-function variants in KCNH1 or KCNN3, and gain-of-function KCNK4 variants underlie the clinically similar FHEIG (facial dysmorphism, hypertrichosis, epilepsy, intellectual disability/developmental delay, and gingival overgrowth) syndrome; KCNH1, KCNN3 and KCNK4 encode potassium channels. Within our research project on ZLS, we performed targeted Sanger sequencing of ABCC9 in 15 individuals tested negative for a mutation in the ZLS-associated genes and found two individuals harboring a heterozygous pathogenic ABCC9 missense variant. Through a collaborative effort, we identified a total of nine individuals carrying a monoallelic ABCC9 variant: five sporadic patients and four members of two unrelated families. Among the six detected ABCC9 missense variants, four [p.(Pro252Leu), p.(Thr259Lys), p.(Ala1064Pro), and p.(Arg1197His)] were novel. Systematic assessment of the clinical features in the nine cases with an ABCC9 variant highlights the significant clinical overlap between ZLS and CS that includes early developmental delay, hypertrichosis, gingival overgrowth, joint laxity, and hypoplasia of terminal phalanges and nails. Gain of K+ channel activity possibly accounts for significant clinical similarities of CS, ZLS and FHEIG syndrome and defines a new subgroup of potassium channelopathies.


Asunto(s)
Anomalías Múltiples/genética , Cardiomegalia/genética , Anomalías Craneofaciales/genética , Fibromatosis Gingival/genética , Deformidades Congénitas de la Mano/genética , Hipertricosis/genética , Mutación Missense , Osteocondrodisplasias/genética , Fenotipo , Receptores de Sulfonilureas/genética , Anomalías Múltiples/patología , Adulto , Cardiomegalia/patología , Niño , Anomalías Craneofaciales/patología , Femenino , Fibromatosis Gingival/patología , Deformidades Congénitas de la Mano/patología , Humanos , Hipertricosis/patología , Lactante , Masculino , Persona de Mediana Edad , Osteocondrodisplasias/patología
9.
J Multidiscip Healthc ; 9: 587-614, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27843325

RESUMEN

Marfan syndrome (MFS) is a rare, severe, chronic, life-threatening disease with multiorgan involvement that requires optimal multidisciplinary care to normalize both prognosis and quality of life. In this article, each key team member of all the medical disciplines of a multidisciplinary health care team at the Hamburg Marfan center gives a personal account of his or her contribution in the management of patients with MFS. The authors show how, with the support of health care managers, key team members organize themselves in an organizational structure to create a common meaning, to maximize therapeutic success for patients with MFS. First, we show how the initiative and collaboration of patient representatives, scientists, and physicians resulted in the foundation of Marfan centers, initially in the US and later in Germany, and how and why such centers evolved over time. Then, we elucidate the three main structural elements; a team of coordinators, core disciplines, and auxiliary disciplines of health care. Moreover, we explain how a multidisciplinary health care team integrates into many other health care structures of a university medical center, including external quality assurance; quality management system; clinical risk management; center for rare diseases; aorta center; health care teams for pregnancy, for neonates, and for rehabilitation; and in structures for patient centeredness. We provide accounts of medical goals and standards for each core discipline, including pediatricians, pediatric cardiologists, cardiologists, human geneticists, heart surgeons, vascular surgeons, vascular interventionists, orthopedic surgeons, ophthalmologists, and nurses; and of auxiliary disciplines including forensic pathologists, radiologists, rhythmologists, pulmonologists, sleep specialists, orthodontists, dentists, neurologists, obstetric surgeons, psychiatrist/psychologist, and rehabilitation specialists. We conclude that a multidisciplinary health care team is a means to maximize therapeutic success.

10.
Eur J Hum Genet ; 13(5): 563-9, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15770227

RESUMEN

Oculo-facio-cardio-dental (OFCD) syndrome is a rare X-linked dominant condition with male lethality characterized by microphthalmia, congenital cataracts, facial dysmorphic features, congenital heart defects, and dental anomalies. Mutations in BCOR (BCL6 co-repressor) located in Xp11.4 have been described to cause OFCD syndrome. Lenz microphthalmia syndrome is inherited in an X-linked recessive pattern comprising microphthalmia/anophthalmia, mental retardation, malformed ears, digital, skeletal, and urogenital anomalies (synonym: microphthalmia with associated anomalies (MAA)). One locus for MAA has been mapped to Xq27-q28. Nonetheless, linkage and subsequent mutation analysis revealed a single missense mutation (p.P85L) in BCOR in a large family with presumed Lenz microphthalmia syndrome (MAA2). We describe novel mutations in BCOR in three patients with OFCD syndrome, two small deletions (c.2488_2489delAG and c.3286delG) and a submicroscopic deletion of about 60 kb encompassing at least BCOR exons 2-15. No BCOR mutation was detected in eight patients with Lenz microphthalmia syndrome. Our data confirm that BCOR is the causative gene for OFCD syndrome; however, the failure to identify any mutation in patients with Lenz microphthalmia syndrome together with the oligosymptomatic phenotype in the reported MAA2 patients suggest that BCOR is not the major gene for this syndrome.


Asunto(s)
Anomalías Múltiples/genética , Anomalías del Ojo/genética , Cardiopatías Congénitas/genética , Microftalmía/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Adolescente , Preescolar , Cromosomas Humanos X/genética , Análisis Mutacional de ADN , Femenino , Eliminación de Gen , Humanos , Hibridación Fluorescente in Situ , Lactante , Masculino , Mutación Missense , Polimorfismo de Nucleótido Simple
11.
Nat Genet ; 47(6): 661-7, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25915598

RESUMEN

Zimmermann-Laband syndrome (ZLS) is a developmental disorder characterized by facial dysmorphism with gingival enlargement, intellectual disability, hypoplasia or aplasia of nails and terminal phalanges, and hypertrichosis. We report that heterozygous missense mutations in KCNH1 account for a considerable proportion of ZLS. KCNH1 encodes the voltage-gated K(+) channel Eag1 (Kv10.1). Patch-clamp recordings showed strong negative shifts in voltage-dependent activation for all but one KCNH1 channel mutant (Gly469Arg). Coexpression of Gly469Arg with wild-type KCNH1 resulted in heterotetrameric channels with reduced conductance at positive potentials but pronounced conductance at negative potentials. These data support a gain-of-function effect for all ZLS-associated KCNH1 mutants. We also identified a recurrent de novo missense change in ATP6V1B2, encoding the B2 subunit of the multimeric vacuolar H(+) ATPase, in two individuals with ZLS. Structural analysis predicts a perturbing effect of the mutation on complex assembly. Our findings demonstrate that KCNH1 mutations cause ZLS and document genetic heterogeneity for this disorder.


Asunto(s)
Anomalías Múltiples/genética , Anomalías Craneofaciales/genética , Canales de Potasio Éter-A-Go-Go/genética , Fibromatosis Gingival/genética , Deformidades Congénitas de la Mano/genética , ATPasas de Translocación de Protón Vacuolares/genética , Animales , Células CHO , Codón sin Sentido , Cricetinae , Cricetulus , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Potenciales de la Membrana , Modelos Moleculares , Mutación Missense , Linaje , Conformación Proteica , Xenopus laevis
12.
Mol Syndromol ; 5(5): 251-6, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25337074

RESUMEN

In this study, we report on 2 sisters from India with oculo-facio-cardio-dental (OFCD) syndrome caused by a novel heterozygous mutation c.3490C>T (p.R1164*) in the BCOR gene. OFCD syndrome is an X-linked inherited disorder which is lethal in males. Interestingly, both parents of the sisters were phenotypically normal, and DNA analysis from blood and buccal or saliva cells failed to detect the BCOR mutation found in their 2 daughters. To the best of our knowledge, for the first time, we provide indirect evidence of germline mosaicism for the BCOR mutation in one of the parents of the 2 sisters affected by OFCD syndrome. Although this condition is lethal in males, gonadal mosaicism could also be present in the father. The relevance of clinical diagnosis and mutation analysis required for genetic counseling is described in this family.

13.
Eur J Hum Genet ; 17(10): 1207-15, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19277062

RESUMEN

Focal dermal hypoplasia (FDH) is an X-linked developmental disorder with male lethality characterized by patchy dermal hypoplasia, skeletal and dental malformations, and microphthalmia or anophthalmia. Recently, heterozygous loss-of-function mutations in the PORCN gene have been described to cause FDH. FDH shows some clinical overlap with the microphthalmia with linear skin defects (MLS) syndrome, another X-linked male lethal condition, associated with mutations of HCCS in the majority of cases. We performed DNA sequencing of PORCN in 13 female patients with the clinical diagnosis of FDH as well as four female patients with MLS syndrome and no mutation in HCCS. We identified PORCN mutations in all female patients with FDH. Eleven patients seem to have constitutional PORCN alterations in the heterozygous state and two individuals are mosaic for the heterozygous sequence change in PORCN. No PORCN mutation was identified in the MLS-affected patients, providing further evidence that FDH and MLS do not overlap genetically. X chromosome inactivation (XCI) analysis revealed a random or slightly skewed XCI pattern in leukocytes of individuals with intragenic PORCN mutation suggesting that defective PORCN does not lead to selective growth disadvantage, at least in leukocytes. We conclude that the PORCN mutation detection rate is high in individuals with a clear-cut FDH phenotype and somatic mosaicism can be present in a significant proportion of patients with mild or classic FDH.


Asunto(s)
Hipoplasia Dérmica Focal/genética , Microftalmía/genética , Aciltransferasas , Empalme Alternativo , Preescolar , Cromosomas Humanos X , Análisis Mutacional de ADN , Femenino , Hipoplasia Dérmica Focal/complicaciones , Genes Ligados a X , Humanos , Masculino , Proteínas de la Membrana/genética , Microftalmía/complicaciones , Modelos Genéticos , Mutación , Fenotipo , Polimorfismo de Nucleótido Simple
14.
Am J Med Genet A ; 143A(22): 2668-74, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17937436

RESUMEN

Zimmermann-Laband syndrome (ZLS) is a rare autosomal dominant inherited disorder characterized by a coarse facial appearance, gingival fibromatosis, and absence or hypoplasia of the terminal phalanges and nails of hands and feet. Additional, more variable features include hyperextensibility of joints, hepatosplenomegaly, mild hirsutism, and mental retardation. Mapping of the translocation breakpoints of t(3;8) and t(3;17) found in patients with the typical clinical features of ZLS defined a common breakpoint region of approximately 280 kb located in 3p14.3, which includes the genes CACNA2D3 and WNT5A. Breakpoint cloning revealed that both translocations most likely occurred by non-homologous (illegitimate) recombination. Mutation analysis of nine genes located in 3p21.1-p14.3, including CACNA2D3, which is directly disrupted by one breakpoint of the t(3;17), identified no pathogenic mutation in eight sporadic patients with ZLS. Southern hybridization analysis and multiplex ligation-dependent probe amplification (MLPA) did not detect submicroscopic deletion or duplication in either CACNA2D3 or WNT5A in ZLS-affected individuals. Mutation analysis of nine conserved nongenic sequence elements (CNEs) in 3p21.1-p14.3, which were identified by interspecies comparison and may represent putative regulatory elements for spatiotemporally correct expression of nearby genes, did not show any sequence alteration associated with ZLS. Taken together, the lack of a specific coding-sequence lesion in the common region, defined by two translocation breakpoints, in sporadic patients with ZLS and an apparently normal karyotype suggests that either some other type of genetic defect in this vicinity or an alteration elsewhere in the genome could be responsible for ZLS.


Asunto(s)
Anomalías Múltiples/genética , Canales de Calcio/genética , Aberraciones Cromosómicas , Cromosomas Humanos Par 3/genética , Anomalías Craneofaciales/genética , Rotura Cromosómica , Cromosomas Humanos Par 17 , Cromosomas Humanos Par 8 , Análisis Mutacional de ADN , Humanos , Cariotipificación , Proteínas Proto-Oncogénicas , Síndrome , Translocación Genética , Proteínas Wnt , Proteína Wnt-5a
15.
Am J Med Genet A ; 143A(2): 107-11, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17163523

RESUMEN

A male with 46,XY,t(3;17)(p14.3;q24.3) presented with gingival hyperplasia, hypertrichosis, unusually large ears and marked hypertrophy of the nose, characteristic of the Zimmermann-Laband syndrome (ZLS). Other features include large facial bones and mandibles, large protruding upper lip, enlarged fingers and toes, strabismus, and enlarged phallus. Knowledge of a 46,XX,t(3;8)(p21.2;q24.3) reported previously in a mother and daughter with ZLS suggests that the 3p14.3-p21.2 region may contain a gene responsible for ZLS. We have reassessed the chromosome 3 breakpoint region of the t(3;8) and revised its breakpoint location to 3p14.3, based upon an updated human genome sequence assembly. Using fluorescence in situ hybridization (FISH) with BAC clones, we have also identified a breakpoint spanning clone at 3p14.3 in our t(3;17) patient, thereby narrowing the breakpoint to a region of approximately 200 kb. These data suggest that the gene responsible for ZLS is located in 3p14.3 and implicates four likely candidate genes in this region: CACNA2D3, encoding a voltage-dependent calcium channel, LRTM1, a gene of unknown function embedded within CACNA2D3, WNT5A, encoding a secreted signaling protein of the WNT family, and ERC2, which codes for a synapse protein.


Asunto(s)
Cromosomas Humanos Par 3/genética , Anomalías Craneofaciales/genética , Hiperplasia Gingival/genética , Hipertricosis/genética , Translocación Genética , Proteínas Adaptadoras Transductoras de Señales , Canales de Calcio Tipo L/genética , Línea Celular , Rotura Cromosómica , Anomalías Craneofaciales/patología , Proteínas del Citoesqueleto , Fibroblastos , Hiperplasia Gingival/patología , Humanos , Hipertricosis/patología , Hibridación Fluorescente in Situ , Masculino , Proteínas Proto-Oncogénicas/genética , Síndrome , Proteínas Wnt/genética , Proteína Wnt-5a
16.
Am J Med Genet A ; 117A(3): 289-94, 2003 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-12599195

RESUMEN

Zimmermann-Laband syndrome (ZLS) is a rare disorder characterized by gingival fibromatosis, abnormalities of the nose and/or ears, and absence or hypoplasia of nails or terminal phalanges of hands and feet. Other more variable features include hyperextensibility of joints, hepatosplenomegaly, mild hirsutism, and mental retardation. The genetic basis of ZLS is unknown; autosomal dominant inheritance has been suggested. We report an apparently balanced chromosomal aberration, 46,XX, t(3;8)(p13-p21.2;q24.1-q24.3), in a family with an affected mother and daughter. Using fluorescence in situ hybridization with BAC clones, we refined the breakpoints to 3p21.2 and 8q24.3 and, thereby, narrowed down both breakpoint regions to approximately 1.5 Mb. Our data provide additional support to the assumption that ZLS follows autosomal dominant inheritance. The 3;8 translocation described here represents a powerful resource to identify the causative gene for ZLS that maps most likely to one of the breakpoints.


Asunto(s)
Anomalías Múltiples/genética , Cromosomas Humanos Par 3/genética , Cromosomas Humanos Par 8/genética , Translocación Genética , Anomalías Múltiples/patología , Preescolar , Bandeo Cromosómico , Rotura Cromosómica/genética , Trastornos de los Cromosomas/genética , Trastornos de los Cromosomas/patología , Huesos Faciales/anomalías , Salud de la Familia , Femenino , Fibromatosis Gingival/patología , Dedos/anomalías , Humanos , Hibridación Fluorescente in Situ , Linaje , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA