Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 10(2): e2202815, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36453583

RESUMEN

Due to the ongoing development of portable/mobile electronics, sources to power have received widespread attention. Compared to chemical batteries as power sources, triboelectric nanogenerators (TENGs) possess lots of advantages, including the ability to harvest energy via human motions, flexible structures, environment-friendliness, and long-life characteristics. Although many self-healable TENGs are reported, the achievement of a muscle-like elasticity and the ability to recover from inevitable damage under extreme conditions (such as a high/low temperature and/or humidity) remain a challenge. Herein, a "double-terminal aromatic disulfide" on a structure with zwitterions as branched chains is reported to engineer the high-efficient self-healable elastomer for application in a flexible TENG. The as-designed material exhibits a repeatable elastic recovery (at 250% elongation) and a self-healing efficiency with an ultimate tensile stress of 96% over 2 h, representing an improvement on previously reported disulfide-based elastomers. The elastomer can autonomously recover by 50% even at a subzero temperature of -30 °C within 24 h. The elastomer-based TENG, as a self-driven sensor for detecting human behavior, is demonstrated to exhibit stable outputs and self-healing in the temperature range of -30 to 60 °C, and so is expected to promote the development of self-powered electronics for next-generation human-machine communications.


Asunto(s)
Frío , Elastómeros , Humanos , Elasticidad , Disulfuros , Suministros de Energía Eléctrica
2.
ACS Nano ; 13(8): 8977-8985, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31390182

RESUMEN

Self-healing technology promises a generation of innovation in cross-cutting subjects ranging from electronic skins, to wearable electronics, to point-of-care biomedical sensing modules. Recently, scientists have successfully pulled off significant advances in self-healing components including sensors, energy devices, transistors, and even integrated circuits. Lasers, one of the most important light sources, integrated with autonomous self-healability should be endowed with more functionalities and opportunities; however, the study of self-healing lasers is absent in all published reports. Here, the soft and self-healable random laser (SSRL) is presented. The SSRL can not only endure extreme external strain but also withstand several cutting/healing test cycles. Particularly, the damaged SSRL enables its functionality to be restored within just few minutes without the need of additional energy, chemical/electrical agents, or other healing stimuli, truly exhibiting a supple yet robust laser prototype. It is believed that SSRL can serve as a vital building block for next-generation laser technology as well as follow-on self-healing optoelectronics.


Asunto(s)
Técnicas Biosensibles , Piel/química , Dispositivos Electrónicos Vestibles , Cicatrización de Heridas , Humanos , Rayos Láser , Sistemas de Atención de Punto , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA