Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Biomacromolecules ; 25(5): 3200-3211, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38591457

RESUMEN

Achieving efficient and site-specific conjugation of therapeutic protein to polymer is crucial to augment their applicability in the realms of biomedicine by improving their stability and enzymatic activity. In this study, we exploited tetrazine bioorthogonal chemistry to achieve the site-specific conjugation of bottlebrush polymers to urate oxidase (UOX), a therapeutic protein for gout treatment. An azido-functionalized zwitterionic bottlebrush polymer (N3-ZBP) using a "grafting-from" strategy involving RAFT and ATRP methods was synthesized, and a trans-cyclooctene (TCO) moiety was introduced at the polymer end through the strain-promoted azide-alkyne click (SPAAC) reaction. The subsequent coupling between TCO-incorporated bottlebrush polymer and tetrazine-labeled UOX using a fast and safe bioorthogonal reaction, inverse electron demand Diels-Alder (IEDDA), led to the formation of UOX-ZBP conjugates with a 52% yield. Importantly, the enzymatic activity of UOX remained unaffected following polymer conjugation, suggesting a minimal change in the folded structure of UOX. Moreover, UOX-ZBP conjugates exhibited enhanced proteolytic resistance and reduced antibody binding, compared to UOX-wild type. Overall, the present findings reveal an efficient and straightforward route for synthesizing protein-bottlebrush polymer conjugates without compromising the enzymatic activity while substantially reducing proteolytic degradation and antibody binding.


Asunto(s)
Química Clic , Reacción de Cicloadición , Polímeros , Urato Oxidasa , Urato Oxidasa/química , Química Clic/métodos , Polímeros/química , Ciclooctanos/química , Humanos , Azidas/química , Alquinos/química
2.
Audiol Neurootol ; 24(2): 100-108, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31207595

RESUMEN

BACKGROUND: Endoscopic ear surgery has recently increased, but it is still inconvenient and time-consuming to place packing material in the middle ear with one hand. Poloxamer 407 (P407) is a thermo-reversible gel that can be easily administered with one hand into the middle ear cavity in liquid form. Upon warming to body temperature, the gel form of P407 can support the graft in the target position and is known to prevent postsurgical tissue adhesion. OBJECTIVES: We aim to investigate the feasibility of P407 as packing material in an animal model. Male Hartley guinea pigs (350 and 400 g) were utilized in this study. METHOD: The animals were randomly divided into 3 groups according to the packing material: the control group, the P407 group, and the gelatin group. To assess the role of packing material on bacterial colonization, left ears were inoculated with Streptococcus pneumoniae through the tympanic membrane using a 0° endoscope. Five days after inoculation, the middle ear cavity was packed through a transbullar approach using 18% P407 or gelatin in both ears. In the control group, no ear pack was inserted. The tympanic membrane was examined every week using a 0° 1.9-mm endoscope until 6 weeks. Half of the animals in each group were sacrificed 6 weeks after placement of the packing materials. RESULTS: Compared with the absorbable gelatin sponge, the P407 group showed little inflammation or fibrosis in the tympanic membrane and middle ear mucosa regardless of bacterial inoculation. The gelatin group showed severe otorrhea or perforation until 2 weeks in the right ear (2 of 4) and the left ear (1 of 4). Even though the endoscopic findings were similar between both packing groups at 6 weeks, histological analysis showed persistent packing material, inflammatory cells, and fibrosis in the gelatin group compared to the P407 group. CONCLUSIONS: This study suggested that P407 is feasible as a packing material to handle with one hand and to prevent adhesion, especially in infected middle ear mucosa. Although there is a lack of data on how well P407 supports grafts, we suggest that P407 could be a candidate for packing material in endoscopic ear surgery.


Asunto(s)
Oído Medio/cirugía , Otoscopía , Poloxámero , Animales , Modelos Animales de Enfermedad , Gelatina , Esponja de Gelatina Absorbible , Cobayas , Masculino , Adherencias Tisulares/prevención & control , Membrana Timpánica/patología
3.
PLoS One ; 18(5): e0284626, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37216352

RESUMEN

Noise exposure can destroy the synaptic connections between hair cells and auditory nerve fibers without damaging the hair cells, and this synaptic loss could contribute to difficult hearing in noisy environments. In this study, we investigated whether delivering lithium chloride to the round-window can regenerate synaptic loss of cochlea after acoustic overexposure. Our rat animal model of noise-induced cochlear synaptopathy caused about 50% loss of synapses in the cochlear basal region without damaging hair cells. We locally delivered a single treatment of poloxamer 407 (vehicle) containing lithium chloride (either 1 mM or 2 mM) to the round-window niche 24 hours after noise exposure. Controls included animals exposed to noise who received only the vehicle. Auditory brainstem responses were measured 3 days, 1 week, and 2 weeks post-exposure treatment, and cochleas were harvested 1 week and 2 weeks post-exposure treatment for histological analysis. As documented by confocal microscopy of immunostained ribbon synapses, local delivery of 2 mM lithium chloride produced synaptic regeneration coupled with corresponding functional recovery, as seen in the suprathreshold amplitude of auditory brainstem response wave 1. Western blot analyses revealed that 2 mM lithium chloride suppressed N-methyl-D-aspartate (NMDA) receptor expression 7 days after noise-exposure. Thus, round-window delivery of lithium chloride using poloxamer 407 reduces cochlear synaptic loss after acoustic overexposure by inhibiting NMDA receptor activity in rat model.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Receptores de N-Metil-D-Aspartato , Ratas , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , Cloruro de Litio , Pérdida Auditiva Provocada por Ruido/etiología , Poloxámero , Umbral Auditivo/fisiología , Cóclea/patología , Sinapsis/metabolismo , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología
4.
Arthritis Res Ther ; 25(1): 247, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38111075

RESUMEN

BACKGROUND: Exogenously providing engineered Uox with enhanced half-life is one of the important urate-lowering treatments for gout. The potential of PAT101, a recombinant human albumin (rHA)-conjugated variant, was evaluated and compared as a novel gout treatment through various in vivo studies with PAT101 and competing drugs. METHODS: PAT101 was produced by site-specific conjugation of rHA and Aspergillus flavus Uox (AfUox-rHA) through clickable non-natural amino acid (frTet) and Inverse electron demand Diels-Alder (IEDDA) reaction. In vivo pharmacokinetics, efficacy tests and in vitro immunogenetic assay were performed after single or multiple doses of PAT101 and its competitors in BALB/c mice, transgenic (TG) mice, Sprague-Dawley (SD) rats, and non-human primate (NHP). RESULTS: The half-life of PAT101 in single-dose treated TG mice was more than doubled compared to pegloticase. In SD rats with 4 weeks of repeated administration of rasburicase, only 24% of Uox activity remained, whereas in PAT101, it was maintained by 86%. In the Uox KO model, the survival rate of PAT101 was comparable to that of pegloticase. In addition, human PBMC-based CD4+/CD8+ T-cell activation analysis demonstrated that PAT101 has a lower immune response compared to the original drug, rasburicase. CONCLUSION: All results suggest that this rHA-conjugated AfUox, PAT101, can be provided as a reliable source of Uox for gout treatment.


Asunto(s)
Gota , Urato Oxidasa , Ratones , Animales , Ratas , Humanos , Urato Oxidasa/uso terapéutico , Leucocitos Mononucleares/metabolismo , Ratas Sprague-Dawley , Gota/tratamiento farmacológico , Supresores de la Gota/uso terapéutico , Ratones Transgénicos , Polietilenglicoles/uso terapéutico , Albúminas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA