Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nucleic Acids Res ; 48(1): 130-140, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31713617

RESUMEN

Charcot-Marie-Tooth 1A (CMT1A) is the most common inherited neuropathy without a known therapy, which is caused by a 1.4 Mb duplication on human chromosome 17, which includes the gene encoding the peripheral myelin protein of 22 kDa (PMP22). Overexpressed PMP22 protein from its gene duplication is thought to cause demyelination and subsequently axonal degeneration in the peripheral nervous system (PNS). Here, we targeted TATA-box of human PMP22 promoter to normalize overexpressed PMP22 level in C22 mice, a mouse model of CMT1A harboring multiple copies of human PMP22. Direct local intraneural delivery of CRISPR/Cas9 designed to target TATA-box of PMP22 before the onset of disease, downregulates gene expression of PMP22 and preserves both myelin and axons. Notably, the same approach was effective in partial rescue of demyelination even after the onset of disease. Collectively, our data present a proof-of-concept that CRISPR/Cas9-mediated targeting of TATA-box can be utilized to treat CMT1A.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/terapia , Terapia Molecular Dirigida/métodos , Proteínas de la Mielina/genética , Vaina de Mielina/metabolismo , Células de Schwann/metabolismo , TATA Box , Animales , Axones , Sistemas CRISPR-Cas , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Duplicación Cromosómica , Cromosomas Humanos Par 17 , Modelos Animales de Enfermedad , Edición Génica/métodos , Humanos , Inyecciones , Ratones , Proteínas de la Mielina/metabolismo , Vaina de Mielina/patología , Cultivo Primario de Células , Regiones Promotoras Genéticas , Células de Schwann/patología , Nervio Ciático/metabolismo , Nervio Ciático/patología
2.
Neurobiol Dis ; 100: 99-107, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28108290

RESUMEN

Charcot-Marie-Tooth disease (CMT) is a genetic disorder that can be caused by aberrations in >80 genes. CMT has heterogeneous modes of inheritance, including autosomal dominant, autosomal recessive, X-linked dominant, and X-linked recessive. Over 95% of cases are dominantly inherited. In this study, we investigated whether regulation of a mutant allele by an allele-specific small interfering RNA (siRNA) can alleviate the demyelinating neuropathic phenotype of CMT. We designed 19 different allele-specific siRNAs for Trembler J (Tr-J) mice harboring a naturally occurring mutation (Leu16Pro) in Pmp22. Using a luciferase assay, we identified an siRNA that specifically and selectively reduced the expression level of the mutant allele and reversed the low viability of Schwann cells caused by mutant Pmp22 over-expression in vitro. The in vivo efficacy of the allele-specific siRNA was assessed by its intraperitoneal injection to postnatal day 6 of Tr-J mice. Administration of the allele-specific siRNA to Tr-J mice significantly enhanced motor function and muscle volume, as assessed by the rotarod test and magnetic resonance imaging analysis, respectively. Increases in motor nerve conduction velocity and compound muscle action potentials were also observed in the treated mice. In addition, myelination, as evidenced by toluidine blue staining and electron microscopy, was augmented in the sciatic nerves of the mice after allele-specific siRNA treatment. After validating suppression of the Pmp22 mutant allele at the mRNA level in the Schwann cells of Tr-J mice, we observed increased expression levels of myelinating proteins such as myelin basic protein and myelin protein zero. These data indicate that selective suppression of the Pmp22 mutant allele by non-viral delivery of siRNA alleviates the demyelinating neuropathic phenotypes of CMT in vivo, implicating allele-specific siRNA treatment as a potent therapeutic strategy for dominantly inherited peripheral neuropathies.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Enfermedades Desmielinizantes/genética , Mutación/genética , Proteínas de la Mielina/genética , ARN Interferente Pequeño/genética , Alelos , Animales , Enfermedad de Charcot-Marie-Tooth/patología , Enfermedades Desmielinizantes/patología , Ratones Transgénicos , Fenotipo , Células de Schwann/metabolismo , Nervio Ciático/metabolismo
3.
J Peripher Nerv Syst ; 22(3): 172-181, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28448691

RESUMEN

Mutations in the gap junction protein beta 1 gene (GJB1) cause X-linked Charcot-Marie-Tooth disease type 1 (CMTX1). CMTX1 is representative of the intermediate type of CMT, having both demyelinating and axonal neuropathic features. We analyzed the clinical and genetic characterization of 128 patients with CMTX1 from 63 unrelated families. Genetic analysis revealed a total of 43 mutations including 6 novel mutations. Ten mutations were found from two or more unrelated families. p.V95M was most frequently observed. The frequency of CMTX1 was 9.6% of total Korean CMT family and was 14.8% when calculated within genetically identified cases. Among 67 male and 61 female patients, 22 females were asymptomatic. A high-arched foot, ataxia, and tremor were observed in 87%, 41%, and 35% of the patients, respectively. In the male patients, functional disability scale, CMT neuropathy score, and compound muscle action potential of the median/ulnar nerves were more severely affected than in the female patients. This study provides a comprehensive summary of the clinical features and spectrum of GJB1 gene mutations in Korean CMTX1 patients.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Conexinas/genética , Mutación/genética , Potenciales de Acción/genética , Adulto , Enfermedad de Charcot-Marie-Tooth/diagnóstico por imagen , Enfermedad de Charcot-Marie-Tooth/epidemiología , Distribución de Chi-Cuadrado , Electromiografía , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Femenino , Pruebas Genéticas , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Conducción Nerviosa/genética , República de Corea/epidemiología , Proteína beta1 de Unión Comunicante
4.
J Biomed Sci ; 22: 43, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-26141737

RESUMEN

BACKGROUND: Mutations in heat shock 27 kDa protein 1 (HSP27 or HSPB1) cause distal hereditary motor neuropathy (dHMN) or Charcot-Marie-Tooth disease type 2 F (CMT2F) according to unknown factors. Mutant HSP27 proteins affect axonal transport by reducing acetylated tubulin. RESULTS: We generated a transgenic mouse model overexpressing HSP27-S135F mutant protein driven by Cytomegalovirus (CMV) immediate early promoter. The mouse phenotype was similar to dHMN patients in that they exhibit motor neuropathy. To determine the phenotypic aberration of transgenic mice, behavior test, magnetic resonance imaging (MRI), electrophysiological study, and pathology were performed. Rotarod test showed that founder mice exhibited lowered motor performance. MRI also revealed marked fatty infiltration in the anterior and posterior compartments at calf level. Electrophysiologically, compound muscle action potential (CMAP) but not motor nerve conduction velocity (MNCV) was reduced in the transgenic mice. Toluidine staining with semi-thin section of sciatic nerve showed the ratio of large myelinated axon fiber was reduced, which might cause reduced locomotion in the transgenic mice. Electron microscopy also revealed abundant aberrant myelination. Immunohistochemically, neuronal dysfunctions included elevated level of phosphorylated neurofilament and reduced level of acetylated tubulin in the sural nerve of transgenic mice. There was no additional phenotype besides motor neuronal defects. CONCLUSIONS: Overexpression of HSP27-S135F protein causes peripheral neuropathy. The mouse model can be applied to future development of therapeutic strategies for dHMN or CMT2F.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Proteínas de Choque Térmico/biosíntesis , Atrofia Muscular Espinal/genética , Proteínas de Neoplasias/biosíntesis , Enfermedades del Sistema Nervioso Periférico/genética , Animales , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Modelos Animales de Enfermedad , Proteínas de Choque Térmico/genética , Humanos , Ratones , Ratones Transgénicos , Chaperonas Moleculares , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/patología , Mutación , Proteínas de Neoplasias/genética , Enfermedades del Sistema Nervioso Periférico/fisiopatología
5.
BMC Neurol ; 15: 179, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26437932

RESUMEN

BACKGROUND: Mutations in MPV17 cause the autosomal recessive disorder mitochondrial DNA depletion syndrome 6 (MTDPS6), also called Navajo neurohepatopathy (NNH). Clinical features of MTDPS6 is infantile onset of progressive liver failure with seldom development of progressive neurologic involvement. METHODS: Whole exome sequencing (WES) was performed to isolate the causative gene of two unrelated neuropathy patients (9 and 13 years of age) with onset of the syndrome. Clinical assessments and biochemical analysis were performed. RESULTS: A novel homozygous mutation (p.R41Q) in MPV17 was found by WES in both patients. Both showed axonal sensorimotor polyneuropathy without liver and brain involvement, which is neurophysiologically similar to axonal Charcot-Marie-Tooth disease (CMT). A distal sural nerve biopsy showed an almost complete loss of the large and medium-sized myelinated fibers compatible with axonal neuropathy. An in vitro assay using mouse motor neuronal cells demonstrated that the abrogation of MPV17 significantly affected cell integrity. In addition, the expression of the mutant protein affected cell proliferation. These results imply that both the loss of normal function of MPV17 and the gain of detrimental effects of the mutant protein might affect neuronal function. CONCLUSION: We report a novel homozygous mutation in MPV17 from two unrelated patients harboring axonal sensorimotor polyneuropathy without hepatoencephalopathy. This report expands the clinical spectrum of diseases caused by mutations of MPV17, and we recommend MPV17 gene screening for axonal peripheral neuropathies.


Asunto(s)
Homocigoto , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Mutación , Polineuropatías/genética , Adulto , Pueblo Asiatico/genética , Femenino , Humanos , Masculino , Linaje , República de Corea
6.
Plast Reconstr Surg ; 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37335589

RESUMEN

BACKGROUND: Benign masseteric hypertrophy (BMH) is a condition in which the thickness of the masseter muscle is increased, resulting in jawline prominence with undesirable aesthetic appearance. Botulinum toxin type A (BTA) injection is a promising treatment option, but its effective dose remains debated. METHODS: Adults over 19 diagnosed with BMH through visual examination and palpation related to a masseter muscle prominence were selected; 80 patients were randomly assigned into five groups (placebo group and 4 groups with different doses of BTA - 24U, 48U, 72U, 96U on both sides of the jaw) and treated with placebo or BTA once at their baseline visit. During each follow-up, the treatment efficacy was evaluated via ultrasound examination of the masseter muscle, 3D facial contour analysis, visual evaluation by the investigator, and patient satisfaction evaluation. RESULTS: The mean age of the 80 patients was 42.7±9.98 years; 68.75% were women. The mean change of the MMT during the maximum clenching state after 12 weeks of drug administration compared to the baseline in the 24U, 48U, 72U, and 96U groups were -2.33±0.41 mm, -3.35±0.42 mm, -2.86±0.42 mm, and -3.79±0.42 mm. All treatment groups showed a statistically significant decrease compared to placebo. Regarding subjective satisfaction, all treatment groups, except the 24U group at 4 weeks, showed higher satisfaction than the placebo group during all visits. No significant adverse events were noted. CONCLUSIONS: BTA administration of at least 48U for BMH is more cost-effective than high-dose units and has a low possibility of side effects.

7.
Exp Neurobiol ; 28(2): 279-288, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31138995

RESUMEN

Charcot-Marie Tooth disease type 1A (CMT1A), the major type of CMT, is caused by duplication of peripheral myelin protein 22 (PMP22) gene whose overexpression causes structural and functional abnormalities in myelination. We investigated whether miRNA-mediated regulation of PMP22 expression could reduce the expression level of PMP22, thereby alleviating the demyelinating neuropathic phenotype of CMT1A. We found that several miRNAs were down-regulated in C22 mouse, a CMT1A mouse model. Among them, miR-381 could target 3' untranslated region (3'UTR) of PMP22 in vitro based on Western botting and quantitative Real Time-PCR (qRT-PCR) results. In vivo efficacy of miR-381 was assessed by administration of LV-miR-381, an miR-381 expressing lentiviral vector, into the sciatic nerve of C22 mice by a single injection at postnatal day 6 (p6). Administration of LV-miR-381 reduced expression level of PMP22 along with elevated level of miR-381 in the sciatic nerve. Rotarod performance analysis revealed that locomotor coordination of LV-miR-381 administered C22 mice was significantly enhanced from 8 weeks post administration. Electrophysiologically, increased motor nerve conduction velocity was observed in treated mice. Histologically, toluidine blue staining and electron microscopy revealed that structural abnormalities of myelination were improved in sciatic nerves of LV-miR-381 treated mice. Therefore, delivery of miR-381 ameliorated the phenotype of peripheral neuropathy in CMT1A mouse model by down-regulating PMP22 expression. These data suggest that miRNA can be used as a potent therapeutic strategy to control diseases with copy number variations such as CMT1A.

8.
Int J Mol Med ; 44(1): 125-134, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31059078

RESUMEN

Mutations in myelin protein zero (MPZ) cause inherited peripheral neuropathies, including Charcot­Marie­Tooth disease (CMT) and Dejerine­Sottas neuropathy. Mutant MPZ proteins have previously been reported to cause CMT via enhanced endoplasmic reticulum (ER) stress and Schwann cell (SC) death, although the pathological mechanisms have not yet been elucidated. In this study, we generated an in vitro model of rat SCs expressing mutant MPZ (MPZ V169fs or R98C) proteins and validated the increase in cell death and ER stress induced by the overexpression of the MPZ mutants. Using this model, we examined the efficacy of 3 different aminosalicylic acids (ASAs; 4­ASA, sodium 4­ASA and 5­ASA) in alleviating pathological phenotypes. FACS analysis indicated that the number of apoptotic rat SCs, RT4 cells, induced by mutant MPZ overexpression was significantly reduced following treatment with each ASA. In particular, treatment with 4­ASA reduced the levels of ER stress markers in RT4 cells induced by V169fs MPZ mutant overexpression and relieved the retention of V169fs mutant proteins in the ER. Additionally, the level of an apoptotic signal mediator (p­JNK) was only decreased in the RT4 cells expressing R98C MPZ mutant protein following treatment with 4­ASA. Although 4­ASA is known as a free radical scavenger, treatment with 4­ASA in the in vitro model did not moderate the level of reactive oxygen species, which was elevated by the expression of mutant MPZ proteins. On the whole, the findings of this study indicate that treatment with 4­ASA reduced the ER stress and SC death caused by 2 different MPZ mutants and suggest that ASA may be a potential therapeutic agent for CMT.


Asunto(s)
Ácido Aminosalicílico/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Mutación Missense , Proteína P0 de la Mielina/metabolismo , Células de Schwann/metabolismo , Sustitución de Aminoácidos , Animales , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Línea Celular , Enfermedad de Charcot-Marie-Tooth/tratamiento farmacológico , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Estrés del Retículo Endoplásmico/genética , Humanos , Proteína P0 de la Mielina/genética , Ratas , Células de Schwann/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA