RESUMEN
Finding causative genetic mutations is important in the diagnosis and treatment of hereditary peripheral neuropathies. This study was conducted to find new genes involved in the pathophysiology of hereditary peripheral neuropathy. We identified a new mutation in the EBP50 gene, which is co-segregated with neuropathic phenotypes, including motor and sensory deficit in a family with Charcot-Marie-Tooth disease. EBP50 is known to be important for the formation of microvilli in epithelial cells, and the discovery of this gene mutation allowed us to study the function of EBP50 in the nervous system. EBP50 was strongly expressed in the nodal and paranodal regions of sciatic nerve fibers, where Schwann cell microvilli contact the axolemma, and at the growth tips of primary Schwann cells. In addition, EBP50 expression was decreased in mouse models of peripheral neuropathy. Knockout mice were used to study EBP50 function in the peripheral nervous system. Interestingly motor function deficit and abnormal histology of nerve fibers were observed in EBP50+/- heterozygous mice at 12 months of age, but not 3 months. in vitro studies using Schwann cells showed that NRG1-induced AKT activation and migration were significantly reduced in cells overexpressing the I325V mutant of EBP50 or cells with knocked-down EBP50 expression. In conclusion, we show for the first time that loss of function due to EBP50 gene deficiency or mutation can cause peripheral neuropathy.
Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Ratones , Ratones Noqueados , Mutación , Nervios Periféricos , Sistema Nervioso PeriféricoRESUMEN
Head restraining is an experimental technique that firmly secures the animal's head to a fixation apparatus for the precise control and sensing of behaviors. However, procedural and surgical difficulties and limitations have been obstructing the use of the technique in neurophysiological and behavioral experiments. Here, we propose a novel design of the head-restraining apparatus which is easy to develop and convenient for practical use. Head restraining procedure can be completed by sliding the head mounter, which is molded by dental cement during implantation surgery, into the port, which serves as matching guide rails for the mounter, of the fixation bar. So neither skull-attached plates nor screws for fixation are needed. We performed intracranial self stimulation experiment in rats using the newly designed device. Rats were habituated to acclimatize the head-restraint environment and trained to discriminate two spatially distinguished cues using a customized push-pull lever as an operandum. Direct electrical stimulation into the medial forebrain bundle served as reward. We confirmed that head restraining was stable throughout experiments and rats were able to learn to manipulate the lever after successful habituation. Our experimental framework might help precise control or sensing of behavior under head fixed rats using direct electrical brain stimulation as a reward.
RESUMEN
Bisphenol A (BPA), an endocrine disrupter, is contained in cans, polycarbonate bottles and some dental sealants. While the toxicological effects of BPA on the endocrine system have been extensively studied, its action on the central nervous system is poorly understood. Herein, we report the effects of BPA on GABA-induced currents (I(GABA)), using a conventional whole-cell patch clamp technique from acutely isolated rat CA3 pyramidal neurons. By itself, BPA concentration-dependently elicited the membrane current, which was significantly blocked by bicuculline, a selective GABA(A) receptor antagonist. BPA potentiated the peak I(GABA) induced by lower concentrations of GABA (<10 microM) in a concentration-dependent manner. The extent of BPA-induced potentiation of I(GABA) was significantly reduced by either diazepam or ethanol, allosteric modulators of GABA(A) receptors. BPA, however, inhibited the peak I(GABA) induced by higher concentrations of GABA (>30 microM), and accelerated the desensitization rate of I(GABA). BPA also greatly inhibited the steady state I(GABA) induced by higher concentrations of GABA (>30 microM) in a noncompetitive manner. In addition, BPA affected synaptic GABA(A) receptors as it decreased the amplitude of GABAergic miniature inhibitory postsynaptic currents in a concentration-dependent manner. Considering its complex modulatory effects on GABA(A) receptors, BPA might have potential toxicological effects on the central nervous system.
Asunto(s)
Estrógenos no Esteroides/farmacología , Hipocampo/citología , Fenoles/farmacología , Células Piramidales/efectos de los fármacos , Receptores de GABA-A/metabolismo , Animales , Animales Recién Nacidos , Compuestos de Bencidrilo , Bicuculina/farmacología , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Interacciones Farmacológicas , Estimulación Eléctrica , Antagonistas del GABA/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Ácido gamma-Aminobutírico/farmacologíaRESUMEN
Head fixation is a technique of immobilizing animal's head by attaching a head-post on the skull for rigid clamping. Traditional head fixation requires surgical attachment of metallic frames on the skull. The attached frames are then clamped to a stationary platform resulting in immobilization of the head. However, metallic frames for head fixation have been technically difficult to design and implement in general laboratory environment. In this study, we provide a novel head fixation method. Using a custom-made head fixation bar, head mounter is constructed during implantation surgery. After the application of acrylic resin for affixing implants such as electrodes and cannula on the skull, additional resins applied on top of that to build a mold matching to the port of the fixation bar. The molded head mounter serves as a guide rails, investigators conveniently fixate the animal's head by inserting the head mounter into the port of the fixation bar. This method could be easily applicable if implantation surgery using dental acrylics is necessary and might be useful for laboratories that cannot easily fabricate CNC machined metal head-posts.
Asunto(s)
Resinas Acrílicas , Cabeza/fisiología , Inmovilización/instrumentación , Inmovilización/métodos , Animales , Diseño de Equipo , Prótesis e Implantes , Ratas , CráneoRESUMEN
Detailed knowledge of the inhibitory input to trigeminal motoneurons is needed to understand better the central mechanisms of jaw movements. Here a quantitative analysis of terminals contacting somata of jaw-closing (JC) and jaw-opening (JO) alpha-motoneurons, and of JC gamma-motoneurons, was performed by use of serial sectioning and postembedding immunogold cytochemistry. For each type of motoneuron, the synaptic boutons were classified into four groups, i.e., immunonegative boutons or boutons immunoreactive to glycine only, to gamma-aminobutyric acid (GABA) only, or to both glycine and GABA. The density of immunolabeled boutons was much higher for the alpha- than for the gamma-motoneurons. In the alpha-motoneuron populations, the immunolabeled boutons were subdivided into one large group of boutons containing glycine-like immunoreactivity only, one group of intermediate size harboring both glycine- and GABA-like immunoreactivity, and a small group of boutons containing GABA-like immunoreactivity only. The percentage of immunolabeled boutons was higher for JC than JO alpha-motoneurons, the most pronounced difference being observed for glycine-like immunoreactivity. In contrast, on the somatic membrane of gamma-motoneurons, the three types of immunoreactive bouton occurred at similar frequencies. These results indicate that trigeminal motoneurons are strongly and differentially controlled by premotoneurons containing glycine and/or GABA and suggest that these neurons play an important role for the generation of masticatory patterns.