Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Macromol Rapid Commun ; 42(12): e2100125, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33904219

RESUMEN

In order to improve the processability of conductive polyurethane (CPU) containing aniline oligomers, a new CPU containing aniline trimer (AT) and l-lysine (PUAT) are designed and synthesized. Further, the 3D porous PUAT membranes have been prepared by a simple gel cooperated with freeze-drying method. Chemical testings and conductive properties testify a self- doping model of PUAT based on the rich electronic l-lysine and electroaffinity AT moities. The self-doping behavior further endows the PUAT copolymers specific characteristics such as high electrical conductivity and the formation of the polaron lattice like-structure in good solvent dimethyl sulfoxide. The combination of organogel and freeze-drying could prevent the collapse of pore structure when the copolymers are molded as membranes. The synergistic effect of l-lysine and AT components has a strong influence on the dissolution, degradation, thermal stability, and mechanical properties of PUAT. The excellent properties of PUAT would broad the application of conductive polymers in biomedicine field.


Asunto(s)
Doping en los Deportes , Poliuretanos , Conductividad Eléctrica , Polímeros , Porosidad
2.
ACS Appl Mater Interfaces ; 16(26): 33005-33020, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38900067

RESUMEN

Inspired by the crucial role of matrix vesicles (MVs), a series of biomimetic vesicles (BVs) fabricated by calcium glycerophosphate (CaGP) modified polyurethane were designed to mediate the mineralization through in situ enzyme activation for bone therapy. In this study, alkaline phosphatase (ALP) was harbored in the porous BVs by adsorption (Ad-BVs) or entrapment (En-BVs). High encapsulation of ALP on En-BVs was effectively self-activating by calcium ions of CaGP-modified PU that specifically hydrolyzed the organophosphorus (CaGP) to inorganic phosphate, thus promoting the formation of the highly oriented bone-like apatite in vitro. Enzyme-catalyzed kinetics confirms the regulation of apatite crystallization by the synergistic action of self-activated ALP and the confined microcompartments of BVs. This leads to a supersaturated microenvironment, with the En-BVs group exhibiting inorganic phosphate (Pi) levels 4.19 times higher and Ca2+ levels 3.67 times higher than those of simulated body fluid (SBF). Of note, the En-BVs group exhibited excellent osteo-inducing differentiation of BMSCs in vitro and the highest maturity with reduced bone loss in rat femoral defect in vivo. This innovative strategy of biomimetic vesicles is expected to provide valuable insights into the enzyme-activated field of bone therapy.


Asunto(s)
Fosfatasa Alcalina , Materiales Biomiméticos , Calcificación Fisiológica , Animales , Ratas , Fosfatasa Alcalina/metabolismo , Fosfatasa Alcalina/química , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Calcificación Fisiológica/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Ratas Sprague-Dawley , Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Glicerofosfatos/química , Poliuretanos/química , Poliuretanos/farmacología
3.
ACS Appl Mater Interfaces ; 16(1): 111-126, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38112686

RESUMEN

There is an urgent need to assess material degradation in situ and in real time for their promising application in regeneration therapy. However, traditional monitoring methods in vitro cannot always profile the complicated behavior in vivo. This study designed and synthesized a new biodegradable polyurethane (PU-P) scaffold with polycaprolactone glycol, isophorone diisocyanate, and l-lysine ethyl ester dihydrochloride. To monitor the degradation process of PU-P, calcein was introduced into the backbone (PU-5) as a chromophore tracing in different sites of the body and undegradable fluorescent scaffold (CPU-5) as the control group. Both PU-P and PU-5 can be enzymatically degraded, and the degradation products are molecularly small and biosafe. Meanwhile, by virtue of calcein anchoring with urethane, polymer chains of PU-5 have maintained the conformational stability and extended the system conjugation, raising a structure-induced emission effect that successfully achieved a significant enhancement in the fluorescence intensity better than pristine calcein. Evidently, unlike the weak fluorescent response of CPU-5, PU-5 and its degradation can be clearly imaged and monitored in real time after implantation in the subcutaneous tissue of nude mice. Meanwhile, the in situ osteogeneration has also been promoted after the two degradable scaffolds have been implanted in the rabbit femoral condyles and degraded with time. To sum up, the strategy of underpinning tracers into degradable polymer chains provides a possible and effective way for real-time monitoring of the degradation process of implants in vivo.


Asunto(s)
Fluoresceínas , Poliuretanos , Andamios del Tejido , Ratones , Animales , Conejos , Poliuretanos/farmacología , Ratones Desnudos , Colorantes , Regeneración , Ingeniería de Tejidos/métodos
4.
J Mater Chem B ; 9(29): 5861-5868, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34259271

RESUMEN

The deformation shrinkage of a poly(lactide-co-glycolide) (PLGA) fibrous material seriously affects its biomedical application. To demonstrate the underlying shrinking mechanism and to find a method to prevent the shrinkage of an electrospun PLGA membrane, we investigated the shrinking behavior of PLGA electrospun membranes under various test conditions and discussed the underlying shrinking mechanism. The results indicated that the shrinkage of the electrospun PLGA membrane was mainly regulated by the glass transition of its polymer fiber; the temperature and liquid environment were found to be the two main factors leading to the shrinkage of the electrospun PLGA membrane through affecting its glass transition. Then a heat stretching (HS) technique was proposed by us to stabilize the electrospun PLGA membrane. After HS treatment, the glass transition temperature (Tg) of the electrospun PLGA membrane could increase from 48.38 °C to 54.55 °C. Our results indicated that the HS-treated membranes could maintain a high area percentage of 90.89 ± 2.27% and 84.78 ± 3.36% after immersion respectively in PBS and blood at 37 °C for 2 hours. Further experiments confirmed that the HS technique could also stabilize the dimensional structure of the electrospun PDLLA membrane in PBS and blood at 37 °C. This study provides an effective strategy for preventing the shrinkage of electrospun polyester biomaterials in a physiological environment that may benefit both the material structural stability and the in vivo biological performance.


Asunto(s)
Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Animales , Dimetilformamida/química , Vidrio/química , Cloruro de Metileno/sangre , Cloruro de Metileno/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/sangre , Ratas , Temperatura , Resistencia a la Tracción
5.
J Mater Chem B ; 9(5): 1370-1383, 2021 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-33459325

RESUMEN

To solve the high instances of failure caused by endodontic reinfection, herein, an improved root filling material was produced to meet the multi-functional demand of sealers for root canal therapy. In this study, polyurethane (PU)-based nanocomposites were prepared by loading bismuth oxide, hydroxyapatite and antibacterial agents, namely Ag3PO4 and ZnO nanoparticles, which were named CP-Ag and CP-Zn sealers, respectively. A parallel biological evaluation at bacterial and cellular levels was performed to determine the fate of the different components of the PU-based sealers. Furthermore, the composition of sealers was quantified by screening their antibacterial activity and apoptotic factors, considering the potential toxicity of the nanoparticles and high dosage of metals. The in vitro optimization investigation was conducted systematically against Streptococcus mutans and Staphylococcus aureus, including bacteriostatic and dynamic tests, and the expression of the B-cell lymphoma-2 gene family and caspase proteases in the mitochondria-mediated apoptotic pathway was evaluated using the commercial AH Plus® and Apexit® Plus sealers for comparison. Additionally, the physical properties and sealing ability of sealers were assessed. The results showed that all PU-based sealers could meet the requirements of ISO 6876:2012 for root canal sealing materials. Based on the evaluation system, CP-Zn sealers expressed longer lasting antibacterial activity and lower toxic effect on cells compared to CP-Ag sealers. Especially, the CP-Zn5 sealer exhibited selective antimicrobial efficacy and hypo-toxicity, which were better than that of the two commercial sealers. According to the two-dimensional and three-dimensional methods, the good sealing ability of the CP-Zn5 sealer is the same as the excellent filling characters of AH Plus, which adapts to irregular root canals.


Asunto(s)
Antibacterianos/uso terapéutico , Nanopartículas/uso terapéutico , Materiales de Obturación del Conducto Radicular/uso terapéutico , Tratamiento del Conducto Radicular/métodos , Antibacterianos/farmacología , Apoptosis , Humanos
6.
PLoS One ; 11(8): e0160336, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27500531

RESUMEN

Lentinula edodes, one of the most popular, edible mushroom species with a high content of proteins and polysaccharides as well as unique aroma, is widely cultivated in many Asian countries, especially in China, Japan and Korea. As a white rot fungus with lignocellulose degradation ability, L. edodes has the potential for application in the utilization of agriculture straw resources. Here, we report its 41.8-Mb genome, encoding 14,889 predicted genes. Through a phylogenetic analysis with model species of fungi, the evolutionary divergence time of L. edodes and Gymnopus luxurians was estimated to be 39 MYA. The carbohydrate-active enzyme genes in L. edodes were compared with those of the other 25 fungal species, and 101 lignocellulolytic enzymes were identified in L. edodes, similar to other white rot fungi. Transcriptome analysis showed that the expression of genes encoding two cellulases and 16 transcription factor was up-regulated when mycelia were cultivated for 120 minutes in cellulose medium versus glucose medium. Our results will foster a better understanding of the molecular mechanism of lignocellulose degradation and provide the basis for partial replacement of wood sawdust with agricultural wastes in L. edodes cultivation.


Asunto(s)
Proteínas Fúngicas/genética , Genoma Fúngico , Lignina/metabolismo , Hongos Shiitake/genética , Hongos Shiitake/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Lignina/genética , Filogenia , Hongos Shiitake/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA