Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
mSystems ; 3(6)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534599

RESUMEN

The expanded Human Oral Microbiome Database (eHOMD) is a comprehensive microbiome database for sites along the human aerodigestive tract that revealed new insights into the nostril microbiome. The eHOMD provides well-curated 16S rRNA gene reference sequences linked to available genomes and enables assignment of species-level taxonomy to most next-generation sequences derived from diverse aerodigestive tract sites, including the nasal passages, sinuses, throat, esophagus, and mouth. Using minimum entropy decomposition coupled with the RDP Classifier and our eHOMD V1-V3 training set, we reanalyzed 16S rRNA V1-V3 sequences from the nostrils of 210 Human Microbiome Project participants at the species level, revealing four key insights. First, we discovered that Lawsonella clevelandensis, a recently named bacterium, and Neisseriaceae [G-1] HMT-174, a previously unrecognized bacterium, are common in adult nostrils. Second, just 19 species accounted for 90% of the total sequences from all participants. Third, 1 of these 19 species belonged to a currently uncultivated genus. Fourth, for 94% of the participants, 2 to 10 species constituted 90% of their sequences, indicating that the nostril microbiome may be represented by limited consortia. These insights highlight the strengths of the nostril microbiome as a model system for studying interspecies interactions and microbiome function. Also, in this cohort, three common nasal species (Dolosigranulum pigrum and two Corynebacterium species) showed positive differential abundance when the pathobiont Staphylococcus aureus was absent, generating hypotheses regarding colonization resistance. By facilitating species-level taxonomic assignment to microbes from the human aerodigestive tract, the eHOMD is a vital resource enhancing clinical relevance of microbiome studies. IMPORTANCE The eHOMD (http://www.ehomd.org) is a valuable resource for researchers, from basic to clinical, who study the microbiomes and the individual microbes in body sites in the human aerodigestive tract, which includes the nasal passages, sinuses, throat, esophagus, and mouth, and the lower respiratory tract, in health and disease. The eHOMD is an actively curated, web-based, open-access resource. eHOMD provides the following: (i) species-level taxonomy based on grouping 16S rRNA gene sequences at 98.5% identity, (ii) a systematic naming scheme for unnamed and/or uncultivated microbial taxa, (iii) reference genomes to facilitate metagenomic, metatranscriptomic, and proteomic studies and (iv) convenient cross-links to other databases (e.g., PubMed and Entrez). By facilitating the assignment of species names to sequences, the eHOMD is a vital resource for enhancing the clinical relevance of 16S rRNA gene-based microbiome studies, as well as metagenomic studies.

2.
Genome Biol ; 13(6): R42, 2012 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-22698087

RESUMEN

BACKGROUND: To understand the relationship between our bacterial microbiome and health, it is essential to define the microbiome in the absence of disease. The digestive tract includes diverse habitats and hosts the human body's greatest bacterial density. We describe the bacterial community composition of ten digestive tract sites from more than 200 normal adults enrolled in the Human Microbiome Project, and metagenomically determined metabolic potentials of four representative sites. RESULTS: The microbiota of these diverse habitats formed four groups based on similar community compositions: buccal mucosa, keratinized gingiva, hard palate; saliva, tongue, tonsils, throat; sub- and supra-gingival plaques; and stool. Phyla initially identified from environmental samples were detected throughout this population, primarily TM7, SR1, and Synergistetes. Genera with pathogenic members were well-represented among this disease-free cohort. Tooth-associated communities were distinct, but not entirely dissimilar, from other oral surfaces. The Porphyromonadaceae, Veillonellaceae and Lachnospiraceae families were common to all sites, but the distributions of their genera varied significantly. Most metabolic processes were distributed widely throughout the digestive tract microbiota, with variations in metagenomic abundance between body habitats. These included shifts in sugar transporter types between the supragingival plaque, other oral surfaces, and stool; hydrogen and hydrogen sulfide production were also differentially distributed. CONCLUSIONS: The microbiomes of ten digestive tract sites separated into four types based on composition. A core set of metabolic pathways was present across these diverse digestive tract habitats. These data provide a critical baseline for future studies investigating local and systemic diseases affecting human health.


Asunto(s)
Biota , Heces/microbiología , Metagenoma , Boca/microbiología , Tonsila Palatina/microbiología , Faringe/microbiología , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Adolescente , Adulto , Técnicas de Tipificación Bacteriana/métodos , Bacteroidetes/clasificación , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Femenino , Genes de ARNr , Humanos , Masculino , Filogenia , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , Saliva/microbiología , Veillonellaceae/clasificación , Veillonellaceae/genética , Veillonellaceae/aislamiento & purificación , Adulto Joven
3.
Plast Reconstr Surg ; 128(5): 1061-1068, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22030489

RESUMEN

BACKGROUND: There has been increasing use of synthetic and acellular dermal matrix materials in surgery, ranging from breast reconstruction to hernia repairs. There is a paucity of data on how acellular dermal matrix compares with other surgical materials as a substrate for bacterial adhesion, the first step in formation biofilm, which occurs in prosthetic wound infections. The authors have designed a high-throughput assay to evaluate Staphylococcus aureus adherence on various synthetic and biologically derived materials. METHODS: Clinical isolates of S. aureus (strains SC-1 and UAMS-1) were cultured with different materials, and bacterial adherence was measured using a resazurin cell vitality assay. Four materials that are commonly used in surgery were evaluated: Prolene mesh, Vicryl mesh, and two different acellular dermal matrix preparations (AlloDerm and FlexHD). The authors were able to develop a high-throughput and reliable assay for quantifying bacterial adhesion on synthetic and biologically derived materials. RESULTS: The resazurin vitality assay can be reliably used to quantify bacterial adherence to acellular dermal matrix material and synthetic material. S. aureus strains SC-1 and UAMS-1 both adhered better to acellular dermal matrix materials (AlloDerm versus FlexHD) than to the synthetic material Prolene. S. aureus also adhered better to Vicryl than to Prolene. Strain UAMS-1 adhered better to Vicryl and acellular dermal matrix materials than did strain SC-1. CONCLUSIONS: The results show that S. aureus adheres more readily to acellular dermal matrix material than to synthetic material. The resazurin assay provides a standard method for evaluating surgical materials with regard to bacterial adherence and potential propensity for biofilm development.


Asunto(s)
Adhesión Bacteriana/fisiología , Colágeno , Ensayo de Materiales/métodos , Staphylococcus aureus/crecimiento & desarrollo , Mallas Quirúrgicas , Materiales Biocompatibles , Medios de Cultivo , Humanos , Prótesis e Implantes , Piel Artificial , Staphylococcus aureus/fisiología , Ingeniería de Tejidos
4.
mBio ; 1(3)2010 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-20802827

RESUMEN

The nose and throat are important sites of pathogen colonization, yet the microbiota of both is relatively unexplored by culture-independent approaches. We examined the bacterial microbiota of the nostril and posterior wall of the oropharynx from seven healthy adults using two culture-independent methods, a 16S rRNA gene microarray (PhyloChip) and 16S rRNA gene clone libraries. While the bacterial microbiota of the oropharynx was richer than that of the nostril, the oropharyngeal microbiota varied less among participants than did nostril microbiota. A few phyla accounted for the majority of the bacteria detected at each site: Firmicutes and Actinobacteria in the nostril and Firmicutes, Proteobacteria, and Bacteroidetes in the oropharynx. Compared to culture-independent surveys of microbiota from other body sites, the microbiota of the nostril and oropharynx show distinct phylum-level distribution patterns, supporting niche-specific colonization at discrete anatomical sites. In the nostril, the distribution of Actinobacteria and Firmicutes was reminiscent of that of skin, though Proteobacteria were much less prevalent. The distribution of Firmicutes, Proteobacteria, and Bacteroidetes in the oropharynx was most similar to that in saliva, with more Proteobacteria than in the distal esophagus or mouth. While Firmicutes were prevalent at both sites, distinct families within this phylum dominated numerically in each. At both sites there was an inverse correlation between the prevalences of Firmicutes and another phylum: in the oropharynx, Firmicutes and Proteobacteria, and in the nostril, Firmicutes and Actinobacteria. In the nostril, this inverse correlation existed between the Firmicutes family Staphylococcaceae and Actinobacteria families, suggesting potential antagonism between these groups.


Asunto(s)
Bacterias/genética , Bacterias/aislamiento & purificación , Metagenoma , Cavidad Nasal/microbiología , Orofaringe/microbiología , Adulto , Bacterias/clasificación , Bacterias/metabolismo , Biodiversidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA