Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 44(7): 1223-1233, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28124091

RESUMEN

PURPOSE: Our objective was to determine clinically the value of time-of-flight (TOF) information in reducing PET artifacts and improving PET image quality and accuracy in simultaneous TOF PET/MR scanning. METHODS: A total 65 patients who underwent a comparative scan in a simultaneous TOF PET/MR scanner were included. TOF and non-TOF PET images were reconstructed, clinically examined, compared and scored. PET imaging artifacts were categorized as large or small implant-related artifacts, as dental implant-related artifacts, and as implant-unrelated artifacts. Differences in image quality, especially those related to (implant) artifacts, were assessed using a scale ranging from 0 (no artifact) to 4 (severe artifact). RESULTS: A total of 87 image artifacts were found and evaluated. Four patients had large and eight patients small implant-related artifacts, 27 patients had dental implants/fillings, and 48 patients had implant-unrelated artifacts. The average score was 1.14 ± 0.82 for non-TOF PET images and 0.53 ± 0.66 for TOF images (p < 0.01) indicating that artifacts were less noticeable when TOF information was included. CONCLUSION: Our study indicates that PET image artifacts are significantly mitigated with integration of TOF information in simultaneous PET/MR. The impact is predominantly seen in patients with significant artifacts due to metal implants.


Asunto(s)
Artefactos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Imagen Multimodal , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Adulto , Anciano , Anciano de 80 o más Años , Implantes Dentales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Relación Señal-Ruido , Factores de Tiempo , Adulto Joven
2.
Phys Med Biol ; 68(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37321248

RESUMEN

Objective. This study aims to evaluate radiofrequency (RF) shielding effectiveness (SE), gradient-induced eddy current, magnetic resonance (MR) susceptibility, and positron emission tomography (PET) photon attenuation of six shielding materials: copper plate, copper tape, carbon fiber fabric, stainless steel mesh, phosphor bronze mesh, and a spray-on conductive coating.Approach. We evaluated the six shielding materials by implementing them on identical clear plastic enclosures. We measured the RF SE and eddy current in benchtop experiments (outside of the MR environment) and in a 3T MR scanner. The magnetic susceptibility performance was evaluated in the same MR scanner. Additionally, we measured their effects on PET detectors, including global coincidence time resolution, global energy resolution, and coincidence count rate.Main results. The RF SEs for copper plate, copper tape, carbon fiber fabric, stainless steel mesh, phosphor bronze mesh, and conductive coating enclosures were 56.8 ± 5.8, 63.9 ± 4.3, 33.1 ± 11.7, 43.6 ± 4.5, 52.7 ± 4.6, and 47.8 ±7.1 dB, respectively, in the benchtop experiment. Copper plate and copper tape experienced the most eddy current at 10 kHz in the benchtop experiment and also generated the largest ghosting artifacts in the MR scanner. Stainless steel mesh had the highest mean absolute difference (7.6 ±0.2 Hz) compared to the reference in the MR susceptibility evaluation. The carbon fiber fabric and phosphor bronze mesh enclosures caused the largest photon attenuation, reducing the coincidence count rate by 3.3%, while the rest caused less than 2.6%.Significance. The conductive coating proposed in this study is shown to be a high-performance Faraday cage material for PET/MRI applications based on its overall performance in all the experiments conducted in this study, as well as its ease and flexibility of manufacturing. As a result, it will be selected as the Faraday cage material for our second-generation MR-compatible PET insert.


Asunto(s)
Cobre , Acero Inoxidable , Fibra de Carbono , Fantasmas de Imagen , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética/métodos
3.
Biomed Phys Eng Express ; 7(6)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34488203

RESUMEN

Positron Emission Tomography (PET) reconstructed image signal-to-noise ratio (SNR) can be improved by including the 511 keV photon pair coincidence time-of-flight (TOF) information. The degree of SNR improvement from this TOF capability depends on the coincidence time resolution (CTR) of the PET system, which is essentially the variation in photon arrival time differences over all coincident photon pairs detected for a point positron source placed at the system center. The CTR is determined by several factors including the intrinsic properties of the scintillation crystals and photodetectors, crystal-to-photodetector coupling configurations, reflective materials, and the electronic readout configuration scheme. The goal of the present work is to build a novel TOF-PET system with 100 picoseconds (ps) CTR, which provides an additional factor of 1.5-2.0 improvement in reconstructed image SNR compared to state-of-the-art TOF-PET systems which achieve 225-400 ps CTR. A critical parameter to understand is the optical reflector's influence on scintillation light collection and transit time variations to the photodetector. To study the effects of the reflector covering the scintillation crystal element on CTR, we have tested the performance of four different reflector materials: Enhanced Specular Reflector (ESR) -coupled with air or optical grease to the scintillator; Teflon tape; BaSO4paint alone or mixed with epoxy; and TiO2paint. For the experimental set-up, we made use of 3 × 3 × 10 mm3fast-LGSO:Ce scintillation crystal elements coupled to an array of silicon photomultipliers (SiPMs) using a novel 'side-readout' configuration that has proven to have lower variations in scintillation light collection efficiency and transit time to the photodetector.Results: show CTR values of 102.0 ± 0.8, 100.2 ± 1.2, 97.3 ± 1.8 and 95.0 ± 1.0 ps full-width-half-maximum (FWHM) with non-calibrated energy resolutions of 10.2 ± 1.8, 9.9 ± 1.2, 7.9 ± 1.2, and 8.6 ± 1.7% FWHM for the Teflon, ESR (without grease), BaSO4(without epoxy) and TiO2paint treatments, respectively.


Asunto(s)
Tomografía de Emisión de Positrones , Cerio , Electrones , Fotones , Politetrafluoroetileno , Conteo por Cintilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA