Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Bull Environ Contam Toxicol ; 109(4): 578-584, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35107595

RESUMEN

Risk assessment of soil metal pollution based on total metal contents might give overestimates by neglecting the bioaccessibility of the pollutants to soil biota. Physiologically-based extraction tests (PBET) are in vitro methods for evaluation of bioaccessibility of soil pollutants. A total of 27 soil samples collected from four types of legacy industrial site representing metal smelting, lead-acid battery factories, chemical plants and steel plants were analyzed for the bioaccessibility of six potentially toxic metals using a PBET method. The metal pollutants at the industrial sites depended on the former industrial processes and emissions. The highest proportions of gastric phase and intestinal phase in these soil samples were 43.9% for Cd and 27% for Cu, respectively. Factors affecting metal bioaccessibility included type of industry and soil properties. The soils at a lead-acid battery factory showed relatively high bioaccessibility of Pb, Zn and Cd and those at the steel plant showed relatively low metal bioaccessibility. Soil organic matter and clay contents were positively related to metal bioaccessibility but soil pH and CEC showed negative relationships. Further studies are recommended to determine the speciation of the bioaccessible metals in these soils.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Disponibilidad Biológica , Cadmio/análisis , Arcilla , Monitoreo del Ambiente/métodos , Plomo , Metales Pesados/análisis , Suelo/química , Contaminantes del Suelo/análisis , Acero
2.
Sci Total Environ ; 916: 170253, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38253097

RESUMEN

Root exudates are pivotal in plant stress responses, however, the impact of microplastics (MPs) on their release and characteristics remains poorly understood. This study delves into the effects of 0.05 % and 0.1 % (w/w) additions of polyethylene (PE) MPs on the growth and physiological properties of lettuce (Lactuca sativa L.) following 28 days of exposure. The release characteristics of root exudates were assessed using UV-vis and 3D-EEM. The results indicated that PE increased leaf number but did not significantly affect other agronomic traits or pigment contents. Notably, 0.05 % PE increased the total root length and surface area compared to the 0.1 % addition, while a non-significant trend towards decreased root activity was observed with PE MPs. PE MPs with 0.1 % addition notably reduced the DOC concentration in root exudates by 37.5 %, while 0.05 % PE had no impact on DOC and DON concentrations. PE addition increased the SUVA254, SUVA260, and SUVA280 values of root exudates, with the most pronounced effect seen in the 0.05 % PE treatment. This suggests an increase of aromaticity and hydrophobic components induced by PE addition. Fluorescence Regional Integration (FRI) analysis of 3D-EEM revealed that aromatic proteins (region I and II) were dominant in root exudates, with a slight increase in fulvic acid-like substances (region III) under 0.1 % PE addition. Moreover, prolonged PE exposure induced ROS damage in lettuce leaves, evidenced by a significant increase in content and production rate of O2·-. The decrease in CAT and POD activities may account for the lettuce's response to environmental stress, potentially surpassing its tolerance threshold or undergoing adaptive regulation. These findings underscore the potential risk of prolonged exposure to PE MPs on lettuce growth.


Asunto(s)
Microplásticos , Plásticos , Microplásticos/metabolismo , Plásticos/metabolismo , Polietileno/metabolismo , Lactuca , Hidroponía , Estrés Oxidativo
3.
Sci Total Environ ; 860: 160221, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36402312

RESUMEN

Microplastics (MPs) and sulfamethoxazole (SMX) are emerging contaminants that are ubiquitous in the soil environment. In this study, we investigated MPs polymer type and soil environmental factor effects on SMX adsorption behavior in the soil system. Our results showed that MPs dosage affected the soil particles' SMX adsorption rate and capacity (Qe). Adding 1 % polystyrene (PS) increased the SMX adsorption rate significantly. The value of K1, which represented the adsorption rate, increased from 0.569 h-1 to 1.019 h-1. However, the addition of MPs reduced the soil's SMX equilibrium adsorption capacity slightly. Moreover, increasing salinity strength enhanced SMX adsorption capacity by MPs significantly. However, increasing calcium ions concentration decreased SMX adsorption in the MPs amended soil due to multivalent cationic bridging and competitive adsorption mechanisms. In addition, we observed that fulvic acid addition inhibited SMX adsorption. This study suggests that the addition of MPs reduced the adsorption of SMX in the soil slightly due to dilution effect. Meanwhile, changes in environmental factors also affected the adsorption behavior of SMX in soil amended with MPs.


Asunto(s)
Microplásticos , Suelo , Sulfametoxazol , Plásticos , Polímeros , Concentración Osmolar , Adsorción
4.
J Hazard Mater ; 453: 131391, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37043864

RESUMEN

Microplastics (MPs) contamination in soils seriously threatens agroecosystems globally. However, very few studies have been done on the effects of MPs on the soil nitrogen cycle and related functional microorganisms. To assess MP's impact on the soil nitrogen cycle and related functional bacteria, we carried out a one-month soil incubation experiment using typical acidic soil. The soil was amended with alfalfa meal and was spiked with 1% and 5% (mass percentage) of low-density polyethylene (LDPE) and polyvinyl chloride (PVC) MPs. Our results showed that both LDPE and PVC addition significantly increased soil nitrification rate and nitrate reductase activity, which could further promote soil denitrification. The relative abundance of diazotrophs, ammonium oxidizing, and denitrifying bacterial groups were significantly altered with MPs addition. Moreover, the MPs treatments greatly enhanced denitrifying bacteria richness. Redundancy analysis showed that nitrate reductase activity was the most significant factor affecting the soil functional bacterial community. Correlation analysis shows that Nitrosospira genus might be for the improvement of soil nitrification rate. Our results implied that MPs exposure could significantly affect the soil nitrogen cycling in farmland ecosystems by influencing essential nitrogen functional microorganisms and related enzymatic activities.


Asunto(s)
Nitrificación , Polietileno , Polietileno/farmacología , Microplásticos/farmacología , Plásticos , Cloruro de Polivinilo , Ecosistema , Suelo , Nitrógeno/farmacología , Bacterias , Nitrato Reductasas/farmacología , Microbiología del Suelo
5.
Sci Total Environ ; 808: 152187, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34890670

RESUMEN

Microplastics and veterinary antibiotics are both emerging environmental contaminants that could be co-occurrence in agricultural soils. However, it's still unclear how the microplastics affect the bioaccessibility of antibiotics in a real soil environment. An in-situ measurement using diffusive gradients in thin-films devices suitable for polar organic compounds (o-DGT) coupled with soil moisture sampling were used to reveal such effects. Sulfamethoxazole (SMX) that was selected as a representative antibiotic and polyethylene (PE) microplastic with an average diameter of 35 µm were amended to the paddy soil and saline soil for the study. The result indicated that SMX degradation in the paddy soil was higher than that in the saline soil, meanwhile, PE microplastic addition promoted SMX degradation in both soils. In the paddy soil, PE microplastic addition enhanced release of SMX from soil solid to soil solution but no effects on the bioaccessibile SMX. However, in the saline soil, the PE microplastic addition reduced both SMX in soil solution and bioaccessibile SMX significantly (p < 0.05). The potential resupply ability of the labile SMX from soil solid to soil solution which was expressed as R value enhanced significantly in saline soil, while such a change was negligible in the paddy soil. This implied that long-term release risk of SMX in the PE microplastic contaminated saline soil could not be neglected. Therefore, co-occurrence of PE microplastic and SMX in the soils might increase uptake of SMX by biotas and such effects depended on soil properties.


Asunto(s)
Contaminantes del Suelo , Suelo , Microplásticos , Plásticos , Polietileno , Contaminantes del Suelo/análisis , Sulfametoxazol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA