Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Parasitol Res ; 121(9): 2601-2613, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35788769

RESUMEN

The aim of this study was to identify the aggregation sites and transmission characteristics of Gasterophilus pecorum, the dominant pathogen of endangered equines in desert steppe. Therefore, we tested with a four-arm olfactometer the olfactory response of the G. pecorum adults to the odors that have a great impact on their life cycle, and also investigated the occurrence sites of the adults in the area where the Przewalski's horse (Equus przewalskii) roam frequently during the peak period of G. pecorum infection. The results of four-directional olfactory test showed that the fresh horse feces had a stronger attraction rate on both male (50.4%) and female flies (38.2%). Stipa caucasica, the only oviposition plant where G. pecorum lay eggs, had a better attraction effect on females than that on males. And the attraction rates of S. caucasica to G. pecorum females in the early growth stage (Stipa I) and mid-growth stage (Stipa II) were 32.8% and 36.8%, respectively. In addition, the two-directional olfactory test showed that the attraction rate of males to fresh horse feces (68.90%) was higher than that to Stipa II (31.10%), and females also showed similar olfactory responses. Moreover, in our field investigation, 68.29% of G. pecorum adults were collected from around the horse feces. The results of laboratory test and field investigation implied that the location mechanism of G. pecorum aggregation for mating is related to the orientation of horse feces. The horse feces and the vicinity are the key contamination areas of G. pecorum, and it is also the areas where horses are seriously infected with G. pecorum. Those fresh feces, which gather abundant information about the host, naturally had the greatest chance of contacting with the host; G. pecorum adults create the opportunity to enter directly into the host's mouth and infect the host by laying eggs on S. caucasica, which is the most favorite plant of the host in this area. These characteristics are one of the main reasons why G. pecorum has become the dominant species under the condition of sparse vegetation in desert steppe.


Asunto(s)
Dípteros/fisiología , Heces/química , Enfermedades de los Caballos/parasitología , Enfermedades de los Caballos/transmisión , Parasitosis Intestinales/transmisión , Animales , Clima Desértico , Especies en Peligro de Extinción , Heces/parasitología , Femenino , Caballos , Parasitosis Intestinales/parasitología , Masculino , Parásitos/crecimiento & desarrollo , Parásitos/aislamiento & purificación , Desarrollo de la Planta , Plantas
2.
BMC Public Health ; 13: 156, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23425550

RESUMEN

BACKGROUND: Few studies have evaluated health impacts, especially biomarker changes, following implementation of a new environmental policy. This study examined changes in water fluoride, urinary fluoride (UF), and bone metabolism indicators in children after supplying low fluoride public water in endemic fluorosis areas of Southern China. We also assessed the relationship between UF and serum osteocalcin (BGP), calcitonin (CT), alkaline phosphatase (ALP), and bone mineral density to identify the most sensitive bone metabolism indicators related to fluoride exposure. METHODS: Four fluorosis-endemic villages (intervention villages) in Guangdong, China were randomly selected to receive low-fluoride water. One non-endemic fluorosis village with similar socio-economic status, living conditions, and health care access, was selected as the control group. 120 children aged 6-12 years old were randomly chosen from local schools in each village for the study. Water and urinary fluoride content as well as serum BGP, CT, ALP and bone mineral density were measured by the standard methods and compared between the children residing in the intervention villages and the control village. Benchmark dose (BMD) and benchmark dose lower limit (BMDL) were calculated for each bone damage indicator. RESULTS: Our study found that after water source change, fluoride concentrations in drinking water in all intervention villages (A-D) were significantly reduced to 0.11 mg/l, similar to that in the control village (E). Except for Village A where water change has only been taken place for 6 years, urinary fluoride concentrations in children of the intervention villages were lower or comparable to those in the control village after 10 years of supplying new public water. The values of almost all bone indicators in children living in Villages B-D and ALP in Village A were either lower or similar to those in the control village after the intervention. CT and BGP are sensitive bone metabolism indicators related to UF. While assessing the temporal trend of different abnormal bone indicators after the intervention, bone mineral density showed the most stable and the lowest abnormal rates over time. CONCLUSIONS: Our results suggest that supplying low fluoride public water in Southern China is successful as measured by the reduction of fluoride in water and urine, and changes in various bone indicators to normal levels. A comparison of four bone indicators showed CT and BGP to be the most sensitive indicators.


Asunto(s)
Huesos/metabolismo , Enfermedades Endémicas , Fluoruración/estadística & datos numéricos , Fluoruros/orina , Fluorosis Dental/metabolismo , Fosfatasa Alcalina/sangre , Biomarcadores/sangre , Densidad Ósea , Calcitonina/sangre , Niño , China/epidemiología , Femenino , Fluorosis Dental/epidemiología , Humanos , Masculino , Osteocalcina/sangre
3.
Sci Total Environ ; 890: 164070, 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37196949

RESUMEN

For three years, a large amount of manufactured pollutants such as plastics, antibiotics and disinfectants has been released into the environment due to COVID-19. The accumulation of these pollutants in the environment has exacerbated the damage to the soil system. However, since the epidemic outbreak, the focus of researchers and public attention has consistently been on human health. It is noteworthy that studies conducted in conjunction with soil pollution and COVID-19 represent only 4 % of all COVID-19 studies. In order to enhance researchers' and the public awareness of the seriousness on the COVID-19 derived soil pollution, we propose the viewpoint that "pandemic COVID-19 ends but soil pollution increases" and recommend a whole-cell biosensor based new method to assess the environmental risk of COVID-19 derived pollutants. This approach is expected to provide a new way for environmental risk assessment of soils affected by contaminants produced from the pandemic.


Asunto(s)
COVID-19 , Contaminantes Ambientales , Humanos , COVID-19/epidemiología , Pandemias , Contaminación Ambiental/análisis , Suelo , Plásticos , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA