Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(14): e2216006120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36972460

RESUMEN

Intrinsically disordered proteins (IDPs) SAID1/2 are hypothetic dentin sialophosphoprotein-like proteins, but their true functions are unknown. Here, we identified SAID1/2 as negative regulators of SERRATE (SE), a core factor in miRNA biogenesis complex (microprocessor). Loss-of-function double mutants of said1; said2 caused pleiotropic developmental defects and thousands of differentially expressed genes that partially overlapped with those in se. said1; said2 also displayed increased assembly of microprocessor and elevated accumulation of microRNAs (miRNAs). Mechanistically, SAID1/2 promote pre-mRNA processing 4 kinase A-mediated phosphorylation of SE, causing its degradation in vivo. Unexpectedly, SAID1/2 have strong binding affinity to hairpin-structured pri-miRNAs and can sequester them from SE. Moreover, SAID1/2 directly inhibit pri-miRNA processing by microprocessor in vitro. Whereas SAID1/2 did not impact SE subcellular compartmentation, the proteins themselves exhibited liquid-liquid phase condensation that is nucleated on SE. Thus, we propose that SAID1/2 reduce miRNA production through hijacking pri-miRNAs to prevent microprocessor activity while promoting SE phosphorylation and its destabilization in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Intrínsecamente Desordenadas , MicroARNs , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ARN/metabolismo , Procesamiento Postranscripcional del ARN , MicroARNs/metabolismo , Ribonucleasa III/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
J Nanobiotechnology ; 22(1): 54, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326903

RESUMEN

The treatment of critical-size bone defects with irregular shapes remains a major challenge in the field of orthopedics. Bone implants with adaptability to complex morphological bone defects, bone-adhesive properties, and potent osteogenic capacity are necessary. Here, a shape-adaptive, highly bone-adhesive, and ultrasound-powered injectable nanocomposite hydrogel is developed via dynamic covalent crosslinking of amine-modified piezoelectric nanoparticles and biopolymer hydrogel networks for electrically accelerated bone healing. Depending on the inorganic-organic interaction between the amino-modified piezoelectric nanoparticles and the bio-adhesive hydrogel network, the bone adhesive strength of the prepared hydrogel exhibited an approximately 3-fold increase. In response to ultrasound radiation, the nanocomposite hydrogel could generate a controllable electrical output (-41.16 to 61.82 mV) to enhance the osteogenic effect in vitro and in vivo significantly. Rat critical-size calvarial defect repair validates accelerated bone healing. In addition, bioinformatics analysis reveals that the ultrasound-responsive nanocomposite hydrogel enhanced the osteogenic differentiation of bone mesenchymal stem cells by increasing calcium ion influx and up-regulating the PI3K/AKT and MEK/ERK signaling pathways. Overall, the present work reveals a novel wireless ultrasound-powered bone-adhesive nanocomposite hydrogel that broadens the therapeutic horizons for irregular bone defects.


Asunto(s)
Osteogénesis , Fosfatidilinositol 3-Quinasas , Ratas , Animales , Nanogeles , Huesos/diagnóstico por imagen , Hidrogeles/farmacología
3.
Biopolymers ; 110(12): e23328, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31454076

RESUMEN

Blood vessels play an important role in bone defect repair and growth, and a critical challenge of bone defect repair is the promotion of blood vessel formation. Most of the current methods promote vascularization by adding specific growth factors, which are costly and easy to inactivate. In this study, we developed a covalently cross-linked aminated bioactive glass nanoparticle-chondroitin sulfate methacrylate (ABGN-CSMA) organic-inorganic composite hydrogel with angiogenic properties. The amino groups of the ABGNs form covalent bonds with the carboxyl groups on CSMA. Surface amination modification of BGNs not only improved the dispersion of BGNs in CSMA but also significantly improved the mechanical properties of the composite hydrogel. The largest storage modulus (1200 Pa), the largest loss modulus (560 Pa) and the strongest resistance to deformation of the hydrogel are seen at 10% concentration of ABGNs. Simultaneously, the local pH stability and sustained ion release of the composite hydrogel are conducive to cell adhesion, proliferation, and angiogenesis. This work provides evidence for the development of covalently cross-linked organic-inorganic composite hydrogels with angiogenic properties.


Asunto(s)
Sulfatos de Condroitina , Materiales Biocompatibles Revestidos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Hidrogeles , Nanopartículas/química , Neovascularización Fisiológica/efectos de los fármacos , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Vidrio , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Metacrilatos/química , Metacrilatos/farmacología , Propiedades de Superficie
4.
Adv Healthc Mater ; 12(2): e2201565, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36208068

RESUMEN

Developing an ideal wound dressing that not only accelerates wound healing but also eliminates potential bacterial infections remains a difficult balancing act. This work reports the design of a light-programmable sodium alginate nanocomposite hydrogel loaded with BiOCl/polypyrrole (BOC/PPy) nanosheets for state-switchable wound healing promotion and bacterial infection elimination remotely. The nanocomposite hydrogel possesses programmable photoelectric or photothermal conversion due to the expanded light absorption range, optimized electron transmission interface, promoted photo-generated charge separation, and transfer of the BOC/PPy nanosheets. Under white light irradiation state, the nanocomposite hydrogel induces human umbilical vein endothelial cells migration and angiogenesis, and accelerates the healing efficiency of mouse skin in vivo. Under near-infrared light irradiation state, the nanocomposite hydrogel presents superior antibacterial capability in vitro, and reaches an antibacterial rate of 99.1% for Staphylococcus aureus infected skin wound in vivo. This light-programmable nanocomposite hydrogel provides an on-demand resolution of biological state-switching to balance wound healing and elimination of bacterial infection.


Asunto(s)
Polímeros , Infecciones Estafilocócicas , Animales , Ratones , Humanos , Nanogeles , Células Endoteliales , Hidrogeles/farmacología , Pirroles , Cicatrización de Heridas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/prevención & control
5.
ACS Appl Mater Interfaces ; 12(31): 34505-34513, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32508084

RESUMEN

Cancer residues around the surgical site remain a significant cause of treatment failure with cancer recurrence. To prevent cancer recurrence and simultaneously repair surgery-caused defects, it is urgent to develop implantable biomaterials with anticancer ability and good biological activity. In this work, a functionalized implant is successfully fabricated by doping the effective anticancer element selenium (Se) into the potassium-sodium niobate piezoceramic, which realizes the wireless combination of electrotherapy and chemotherapy. Herein, we demonstrate that the Se-doped piezoelectric implant can cause mitochondrial damage by increasing intracellular reactive oxygen species levels and then trigger the caspase-3 pathway to significantly promote apoptosis of osteosarcoma cells in vitro. Meanwhile, its good biocompatibility has been verified. These results are of great importance for future deployment of wireless electro- and chemostimulation to modulate biological process around the defective tissue.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Materiales Biocompatibles/farmacología , Técnicas Electroquímicas , Selenio/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratas , Selenio/química , Comprimidos/síntesis química , Comprimidos/química , Comprimidos/farmacología
6.
Biotechnol Prog ; 33(5): 1418-1424, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28593695

RESUMEN

Cell density and morphology changes were tested to examine the effects of salts including NaHCO3 , NaCl, KHCO3 , and KCl at 160 mM on protozoa. It was demonstrated that ionic stress rather than osmotic stress led to protozoa cell death and NaHCO3 was shown to be the most effective inhibitor. Deformation of cells and cell shrinkage were observed when protozoan cells were exposed to polyethylene glycol (PEG) or any of the salts. However, while PEG treated cells could fully recover in both number and size, only a small portion of the salt-treated cells survive and cell size was 36-58% smaller than the regular. The disappearance of salt-treated protozoa cells was hypothetically attributed to disruption of the cytoplasmic membrane of these cells. It is further hypothesized that the PEG-treated protozoan cells carried out regulatory volume increase (RVI) after the osmotic shock but the RVI of salt-treated protozoa was hurdled to varied extents. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1418-1424, 2017.


Asunto(s)
Amoeba/efectos de los fármacos , Incrustaciones Biológicas/prevención & control , Chlorophyta/fisiología , Cilióforos/efectos de los fármacos , Presión Osmótica/efectos de los fármacos , Sales (Química)/farmacología , Amoeba/citología , Amoeba/fisiología , Técnicas de Cultivo de Célula/normas , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Chlorophyta/citología , Cilióforos/citología , Cilióforos/fisiología , Concentración Osmolar , Polietilenglicoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA