Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemosphere ; 336: 139179, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37330065

RESUMEN

Aerogel has excellent application potential in adsorption, heat preservation, and other areas due to its typical advantages of low density and high porosity. However, there are several issues with the use of aerogel in oil/water separation, including weak mechanical qualities and challenges in eliminating organic contaminants at low temperature. Inspired by cellulose Iα, which has excellent performance at low temperature, this study used cellulose Iα nanofibers extracted from seaweed solid waste as the skeleton, through covalent cross-linked with ethylene imine polymer (PEI) and hydrophobic modification of 1, 4-phenyl diisocyanate (MDI), supplemented by freeze-drying technology to form three-dimensional sheet, and successfully obtained cellulose aerogels derived from seaweed solid waste (SWCA). The compression test shows that the maximum compressive stress of SWCA is 61 kPa, and the initial performance still maintains 82% after 40 cryogenic compression cycles. In addition, the contact angles of water and oil on the surface of the SWCA were 153° and 0°, respectively, and the stable hydrophobic time in simulated seawater is more than 3 h. By combining the elasticity and superhydrophobicity/superoleophilicity, the SWCA with an oil absorption capacity of up to 11-30 times its mass, might be utilized repeatedly for the separation of an oil/water mixture.


Asunto(s)
Aceites , Residuos Sólidos , Aceites/química , Celulosa/química , Temperatura , Interacciones Hidrofóbicas e Hidrofílicas
2.
ACS Appl Bio Mater ; 4(4): 3499-3506, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35014434

RESUMEN

One-dimensional (1D) nanomaterials are widely used in different fields, and the increased application of 1D nanomaterials has drawn concerns about their unknown toxicity. 1D titanium oxide (TiO2) nanomaterials in different crystal phases are commonly applied in environmental remediation and solar energy conversion fields, but these materials pose a threat to human health, especially to the kidneys, an organ with abundant blood flow. To systematically evaluate the cytotoxicity to the kidneys, TiO2 nanofibers with TiO2(B), anatase, and rutile phases, as well as nanorods with anatase and rutile phases were synthesized and added to the culture medium of HK2 cells. Cell counting kit-8 assay, 2',7'-dichlorofluorescin diacetate assay, Hoechst 33342 staining experiments, and quantitative real-time reverse transcription polymerase chain reaction tests were used to explore the renal effects of the as-prepared TiO2 nanomaterials in the short term or long term. In the short-term evaluation, all the added TiO2 nanomaterials were toxic to HK2 cells, and the cytotoxicity was dose-dependent. Rutile TiO2 can widely attach to the cell surface and displays the most serious cell-killing and proapoptotic ability, while anatase induces the most serious oxidative stress. In long-term evaluation, all the as-prepared TiO2 nanomaterials led to epithelial mesenchymal transition (EMT), a mechanism of renal fibrosis. Consistent with the short-term results, rutile induced the most serious EMT. This study indicated that the renal toxicity of 1D TiO2 nanomaterials is crystal phase-dependent and that rutile induced the most significant renal cell injury. Oxidative stress is a crucial but not the only contributor to the renal toxicity of TiO2 nanomaterials in the short term.


Asunto(s)
Materiales Biocompatibles/farmacología , Nanoestructuras/química , Titanio/farmacología , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Ensayo de Materiales , Tamaño de la Partícula , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo , Titanio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA