Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Syst Evol Microbiol ; 63(Pt 3): 809-814, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22581903

RESUMEN

A facultatively anaerobic bacterium, strain CY01(T), isolated from subterranean forest sediment collected from Guangdong Province, China, was investigated using a polyphasic taxonomic approach. The cells were short rods, Gram-negative, non-sporulating and motile. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain CY01(T) showed highest sequence similarities to Comamonas thiooxydans S23(T) (98.0 %), Comamonas testosteroni JCM 5832(T) (97.9 %), Comamonas koreensis KCTC 12005(T) (97.7 %) and Comamonas odontotermitis LMG 23579(T) (97.0 %). The major respiratory quinone was ubiquinone-8. The major cellular fatty acids were summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c), C16 : 0 and summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c). Based on the phylogenetic analysis, DNA-DNA hybridization, whole-cell fatty acid composition as well as biochemical characteristics, strain CY01(T) was clearly distinguishable from all recognized species of the genus Comamonas and should be classified as a representative of a novel species of the genus, for which the name Comamonas guangdongensis sp. nov. is proposed. The type strain is CY01(T) ( = CCTCC AB 2011133(T) = KACC 16241(T)).


Asunto(s)
Comamonas/clasificación , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , China , Comamonas/genética , Comamonas/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/análisis , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Árboles/microbiología , Ubiquinona/análisis
2.
J Hazard Mater ; 458: 131950, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37421863

RESUMEN

The free radicals released from the advanced oxidation processes can enhance microplastics degradation, however, the existence of microbes acting synergistically in this process is still uncertain. In this study, magnetic biochar was used to initiate the advanced oxidation process in flooded soil. paddy soil was contaminated with polyethylene and polyvinyl chloride microplastics in a long-term incubation experiment, and subsequently subjected to bioremediation with biochar or magnetic biochar. After incubation, the total organic matter present in the samples containing polyvinyl chloride or polyethylene, and treated with magnetic biochar, significantly increased compared to the control. In the same samples there was an accumulation of "UVA humic" and "protein/phenol-like" substances. The integrated metagenomic investigation revealed that the relative abundance of some key genes involved in fatty acids degradation and in dehalogenation changed in different treatments. Results from genome-centric investigation suggest that a Nocardioides species can cooperate with magnetic biochar in the degradation of microplastics. In addition, a species assigned to the Rhizobium taxon was identified as a candidate in the dehalogenation and in the benzoate metabolism. Overall, our results suggest that cooperation between magnetic biochar and some microbial species involved in microplastic degradation is relevant in determining the fate of microplastics in soil.


Asunto(s)
Microplásticos , Suelo , Plásticos , Cloruro de Polivinilo , Carbón Orgánico , Fenómenos Magnéticos , Polietilenos
3.
J Hazard Mater ; 439: 129581, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35843084

RESUMEN

Chromium(Ⅵ) and arsenic(Ⅲ) as typical anionic heavy metal pollutants normally coexist in the environment, greatly aggravating their environmental risks and elevating the difficulty of remediation. Here, a novel polyethyleneimine modified magnetic mesoporous polydopamine nanocomposite (Fe3O4 @mesoPDA/PEI) with abundant active functional groups was exploited as the synchronous adsorbent of Cr(Ⅵ) and As(Ⅲ). The results showed that Cr(Ⅵ) and As(Ⅲ) could mutually promote their conversions and adsorptions on Fe3O4 @mesoPDA/PEI. The adsorption mechanisms of Fe3O4 @mesoPDA/PEI were primarily redox chemistry and also involved electrostatic interactions and coordination. Cr(Ⅵ) was mainly reduced by reductive catechol, while As(Ⅲ) was oxidized to As(Ⅴ) by oxidative active substances (e.g., H2O2, •OH, and quinone). Meanwhile, active intermediate (semiquinone radicals) generated during the Cr(Ⅵ) reduction and As(Ⅲ) oxidation could constitute redox microcirculation with Cr(Ⅵ) and As(Ⅲ) to further accelerate redox reactions of Cr(Ⅵ) and As(Ⅲ) on Fe3O4 @mesoPDA/PEI, thereby exhibiting a synergistic effect. Moreover, newly immobilized Cr(Ⅲ) onto Fe3O4 @mesoPDA/PEI became extra active sites for As adsorption through cation bridges and then recovered by magnetic separation in favor of diminishing the environmental hazards of Cr and As. These findings also provide new inspirations for the roles of redox-active functional groups in the remediation of multiple redox-sensitive heavy metals including Cr(Ⅵ) and As(Ⅲ).


Asunto(s)
Metales Pesados , Nanocompuestos , Contaminantes Químicos del Agua , Adsorción , Cromo/química , Peróxido de Hidrógeno , Concentración de Iones de Hidrógeno , Indoles , Cinética , Fenómenos Magnéticos , Oxidación-Reducción , Polietileneimina/química , Polímeros , Contaminantes Químicos del Agua/química
4.
Water Res ; 225: 119117, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36126427

RESUMEN

The microplastics in nature water are important for the environmental fate of nitrous oxide (N2O). This study investigated the influence and microbial mechanism of microplastic abundance to the N2O flux in typical inflow rivers of Taihu lake. The microplastic abundance were in a range of 160-700 particles/m3 surface water, and 514-3018 particles/kg dry sediment. The highest percentage of microplastic color was transparent, significantly higher than other color (p<0.0001) in both surface water and sediment. The dominant microplastic size was 500-5000 µm in surface water, while size lower than 1000 µm was dominant in sediment. The microplastic abundance in sediment was negatively correlated with the concentration of suspended sediments (SPS) (p<0.05), Chl-a (p<0.05), NH4+-N (p<0.05) and TP (p<0.01) in inflow river surface water. The dissolved N2O concentration were 45.71-132.42 nmol/L, and the N2O fluxes were 29.85-276.60 µmol/m2/d. The dissolved N2O concentration was significantly correlated with the nirK abundance and nirK/nosZI ratio negatively (p<0.05), revealed that sediment nirK-type denitrification was the main driver of dissolved N2O. Meanwhile, the N2O flux (water-air interface) was significantly correlated with nosZI, napA, narG and nirS negatively, implied that nitrification and denitrification interaction in sediment is the main influence factor. The denitrification process in sediment was the main driven factor of N2O releasing. Mantel-test shows that microplastic abundance in surface water was significantly correlated with nitrification (p = 0.001∼0.01) and denitrification (p = 0.01∼0.05) genera in water. The dominant denitrification microorganism was Dechloromonas in sediment and Flavobacterium in surface water. These results provided new insight into the fact that plastisphere which comprises microbial community on microplastic could affect the N2O emission in aquatic system.


Asunto(s)
Lagos , Microplásticos , Ríos , Contaminación Química del Agua , Desnitrificación , Lagos/química , Lagos/microbiología , Microplásticos/análisis , Óxido Nitroso/análisis , Ríos/química , Ríos/microbiología , Sedimentos Geológicos/química , Contaminación Química del Agua/análisis , Microbiología del Agua
5.
Sci Total Environ ; 644: 602-610, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-29990910

RESUMEN

Although previous studies have indicated that selenium (Se) can reduce cadmium (Cd) uptake into rice, the mechanism at the cellular level has not been reported. Here, rice suspension cells exposed to Cd treatment in the presence or absence of Se were characterized. Compared with treatment with alone, pretreatment with Se increased the proportion of live cells by 83.1%. The levels of reactive oxygen species and mitochondrial membrane potential in the Se-pretreated rice cells were decreased by 86.6% and 76.0%, respectively. In addition, non-invasive micro-test technology suggested that the mean values of Cd2+ influx decreased significantly in the Se-pretreated rice cells in a concentration-dependent manner. The results of inductively coupled plasma-mass spectrometry (ICP-MS) showed that 67.4%-78.8% Cd accumulated onto the cell walls of the pretreated-Se rice cells. The addition of Se increased the lignin content and thickness of the cell walls, leading to an improved mechanical force of the cell walls, as determined by atomic force microscopy (AFM). Furthermore, Se pretreatment decreased the expression of genes involved in Cd uptake (OsNramp5) and transport (OsLCT1) but activated the expression of genes involved in Cd transport into vacuoles (OsHMA3) and lignin synthesis (OsPAL, OsCoMT and Os4CL3). These results indicated that supplying Se alleviates Cd toxicity by regulating the express of lignin synthesis and Cd-related genes. The present findings provide new insights on a plausible explanation of the Se-reduced Cd uptake into rice.


Asunto(s)
Cadmio/toxicidad , Oryza/fisiología , Selenio/metabolismo , Contaminantes del Suelo/toxicidad , Transporte Biológico , Lignina
6.
Biosens Bioelectron ; 25(6): 1516-20, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19889528

RESUMEN

This study reports a new approach of improving performance of microbial fuel cells (MFCs) by using a polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode. The immobilization of AQDS on a carbon felt anode was accomplished by electropolymerization of pyrrole while using AQDS as the dopant. The dual-chamber MFC operated with this modified anode in the presence of Shewanella decolorationis S12 showed the maximum power density of 1303 mW m(-2), which was 13 times larger than that obtained from the MFC equipped with an unmodified anode. Evidence from cyclic voltammerty (CV) and scanning electron microscopy (SEM) results indicated that the increase in power generation was assigned to the increased surface area of anode, the enhanced electron-transfer efficiency from the bacteria to the anode via immobilized AQDS, and an increase in the number of bacteria attached to anode.


Asunto(s)
Antraquinonas/química , Fuentes de Energía Bioeléctrica/microbiología , Electrodos , Polímeros/química , Pirroles/química , Shewanella/fisiología , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA