Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell Mol Biol Lett ; 28(1): 70, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626297

RESUMEN

Chronic apical periodontitis is a prevalent oral disease characterized by bone loss, and its underlying mechanisms remain unclear. This study aimed to investigate the role and mechanism of the serine protease GZMA in osteoclasts during chronic apical periodontitis. To address this, we employed crRNA/Cas13d to inhibit GZMA expression and examined its impact on osteoclast behavior. Our findings revealed that GZMA plays a significant role in promoting osteoclast cell proliferation while inhibiting cell apoptosis. Additionally, the inhibition of GZMA led to a notable increase in miR-25-3p expression, which, in turn, downregulated the expression of TGF-ß. Consequently, the reduction in TGF-ß expression led to a decrease in PAR1 expression within the PARs pathway. These results suggest that GZMA might serve as a promising therapeutic target for the treatment of chronic apical periodontitis. Furthermore, our study highlights the potential of targeting GZMA using crRNA/Cas13d as a valuable approach for future therapeutic interventions.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Periodontitis Periapical , Humanos , Osteoclastos , Apoptosis/genética , ARN Guía de Sistemas CRISPR-Cas , Factor de Crecimiento Transformador beta , Periodontitis Periapical/genética , Granzimas
2.
Clin Oral Investig ; 27(5): 2267-2276, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37017756

RESUMEN

OBJECTIVES: This study is aimed at assessing the Cone-beam computed tomographic (CBCT) characteristics of temporomandibular joints (TMJ) in degenerative temporomandibular joint disease (DJD) patients with chewing side preference (CSP). MATERIALS AND METHODS: CBCT images of 98 patients with DJD (67 with CSP and 31 without CSP) and 22 asymptomatic participants without DJD were measured retrospectively to compare the osteoarthritic changes and the morphology of TMJ. Quantitative analysis of the TMJ radiographic images was performed to present a comparison between the three inter-group groups and between the two sides of the joints. RESULTS: The frequencies of the articular flattening and surface erosion occur more often in the preferred side joints of DJD patients with CSP than the contralateral side. In addition, the horizontal angle of condyle, the depth of glenoid fossa (DGF), and the inclination of articular eminence (IAE) were larger in DJD patients with CSP than that in asymptomatic participants (p<0.05). Also, the condylar anteroposterior dimension of preferred side joints was significantly less than that of non-preferred side (p=0.026), while the width of condyles (p=0.041) and IAE (p=0.045) was greater. CONCLUSIONS: DJD patients with CSP appear to have a higher prevalence of osteoarthritic changes, with the morphological changes such as flat condyle, deep glenoid fossa, and steep articular eminence, which might be considered the characteristic imaging features. CLINICAL RELEVANCE: This study found that CSP is a predisposing factor for the development of DJD, and attention should be paid to the existence of CSP in DJD patients during the clinical practice.


Asunto(s)
Cóndilo Mandibular , Trastornos de la Articulación Temporomandibular , Humanos , Estudios Retrospectivos , Masticación , Trastornos de la Articulación Temporomandibular/diagnóstico por imagen , Articulación Temporomandibular/diagnóstico por imagen , Tomografía Computarizada de Haz Cónico
3.
Nano Lett ; 22(6): 2479-2489, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35254073

RESUMEN

New strategies for intracellular electrophysiology break the spatiotemporal limitation of the action potential and lead a notable advance in the investigation of electrically excitable cells and their network. Although successful applications of intracellular recording have been achieved by 3D micro/nanodevices, complex micro/nanofabrication processes preclude the progress of extensive applications. We address this challenge by introducing porous polyethylene terephthalate (PET) membrane to develop a new type of nanotemplate electrode. This nanotemplate electrode is manufactured following a fabrication process on a porous PET membrane by atomic layer deposition. The 3D nanotemplate electrodes afford intracellular access to cardiomyocytes to report intracellular-like action potentials. These controllable nanotemplate electrodes exhibit sensitive and prolonged intracellular recordings of action potentials compared with free-growing 3D nanoelectrodes. This study indicates that the optimized structure of the nanoelectrode significantly promotes the performance of intracellular recording to assess electrophysiology in the fields of cardiology and neuroscience at an action potential level.


Asunto(s)
Fenómenos Electrofisiológicos , Tereftalatos Polietilenos , Potenciales de Acción/fisiología , Electrodos , Porosidad
4.
Protein Expr Purif ; 154: 66-73, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30292807

RESUMEN

Short-chain insecticidal neurotoxin Tx4(6-1) from the spider Phoneutria nigriventer can be prepared by reversed-phase high-performance liquid-chromatography (HPLC) fractionation of PhTx4, but this is difficult and represents an obstacle preventing analyses of its insecticidal activity against agricultural insect pests. Herein, we performed secretory expression of recombinant Tx4(6-1) using Pichia pastoris strain X33 as the host, and screened transformants using enzyme-linked immunosorbent assay (ELISA). In flasks, ∼5 mg/l rTx4(6-1) was expressed as a secreted protein following induction with methanol, and this was increased to 45 mg/l rTx4(6-1) in a fed-batch reactor. Approximately 4 mg of high-purity rTx4(6-1) was purified from a 400 ml fed-batch culture supernatant by Ni+-nitriloacetic acid affinity chromatography, followed by carboxymethyl (CM) sepharose ion-exchange chromatography. Purified rTx4(6-1) was determined by mass spectrometry (MS) analysis, revealing a molecular weight (MW) of 7660.5 Da, larger than the expected size due to O-linked glycosylation. Insect bioactivity tests of rTx4(6-1)-treated fifth-instar silkworm larvae (Bombyx mori Linnaeus) showed neurotoxin symptoms such as contraction paralysis, abdominal contraction, and mouth movement syndrome, with a half lethal dose at 12 h post-injection of ∼4.5-8.5 µg/g body weight. Dietary toxicity was not observed in silkworm larvae.


Asunto(s)
Bombyx/crecimiento & desarrollo , Insecticidas , Neurotoxinas , Venenos de Araña , Arañas , Animales , Insecticidas/química , Insecticidas/farmacología , Larva/crecimiento & desarrollo , Neurotoxinas/biosíntesis , Neurotoxinas/genética , Neurotoxinas/aislamiento & purificación , Neurotoxinas/farmacología , Pichia/química , Pichia/genética , Pichia/metabolismo , Venenos de Araña/biosíntesis , Venenos de Araña/química , Venenos de Araña/genética , Venenos de Araña/farmacología , Arañas/química , Arañas/genética
5.
Environ Res ; 167: 299-306, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30077928

RESUMEN

Paints are often used on chopsticks, however, a paucity of studies has assessed metals in the paints and the associated health risk. In this study, total Pb, Cd, Cr, Co, and Ni concentrations in paints were assessed for 72 wood and 29 stainless steel chopsticks with different colors while metal solubilization from paints in simulated saliva, 0.07 M HCl, and 1% citric acid solutions was measured for 9 samples having total Pb > 90 mg kg-1, representing exposure scenarios of mouthing, incidental paint ingestion, and metal migration in food. Results showed that Pb (0.12-500,000 mg kg-1), Cd (0.002-120,000 mg kg-1), Cr (2.2-8400 mg kg-1), Co (0.004-2600 mg kg-1), and Ni (0.10-150,000 mg kg-1) concentrations varied considerably among paint samples. Most samples showed low metal concentrations, however, high metal concentrations were observed in red and green paints on stainless steel chopsticks, while paints on wood chopsticks showed lower metal concentrations. Estimation of daily metal intakes incorporating metal solubilization data in saliva, 0.07 M HCl, and 1% citric acid solutions suggested that the health risk via saliva contact was negligible, while unacceptable health risk was observed for Pb and Cd via their solubilization in 0.07 M HCl and 1% citric acid solutions from paints with high Pb and Cd concentrations. To avoid Pb and Cd exposure, use of metal-based paints on chopsticks should be banned, particularly in countries where food is regularly consumed with chopsticks.


Asunto(s)
Utensilios de Comida y Culinaria , Exposición Dietética/análisis , Metales Pesados/análisis , Pintura/análisis , Saliva , Humanos
6.
BMC Oral Health ; 16: 23, 2016 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-26897651

RESUMEN

BACKGROUND: To investigate the physical properties and the hydration behaviour of the fast-setting bioceramic iRoot FS Fast Set Root Repair Material (iRoot FS) and three other endodontic cements. METHODS: iRoot FS, Endosequence Root Repair Material Putty (ERRM Putty), gray and white mineral trioxide aggregate (G-MTA & W-MTA), and intermediate restorative material (IRM) were evaluated. The setting time was measured using ANSI/ADA standards. Microhardness was evaluated using the Vickers indentation test. Compressive strength and porosity were investigated at 7 and 28 days. Differential scanning calorimetry (DSC) was employed for the hydration test. RESULTS: iRoot FS had the shortest setting time of the four bioceramic cements (p < .001). The microhardness values of iRoot FS, ERRM Putty and MTA increased at different rates over the 28 days period. At day one, ERRM Putty had the lowest microhardness of the bioceramic cements (p < .001), but reached the same level as MTA at 4, 7 and 28 days. The microhardness of iRoot FS was lower than that of W-MTA at 7 and 28 days (p < .05). The porosity of the materials did not change after 7 days (p < .05). The compressive strength values at 28 days were significantly greater for all bioceramic groups compared to those at 7 days (p < .01). ERRM Putty had the highest compressive strength and the lowest porosity of the evaluated bioceramic cements (p < .05), followed by iRoot FS, W-MTA, and G-MTA, respectively. DSC showed that iRoot FS hydrated fastest, inducing an intense exothermic reaction. The ERRM Putty did not demonstrate a clear exothermic peak during the isothermal calorimetry test. CONCLUSIONS: iRoot FS had a faster setting time and hydrating process than the other bioceramic cements tested. The mechanical properties of iRoot FS, G-MTA and W-MTA were relatively similar.


Asunto(s)
Cerámica/química , Materiales de Obturación del Conducto Radicular/química , Compuestos de Aluminio/química , Materiales Biocompatibles , Compuestos de Calcio/química , Fuerza Compresiva , Combinación de Medicamentos , Óxidos/química , Silicatos/química
7.
Food Sci Nutr ; 12(2): 830-842, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38370038

RESUMEN

Infectious oral diseases are longstanding global public health concerns. However, traditional medical approaches to address these diseases are costly, traumatic, and prone to relapse. Here, we propose a foodborne prophylactic strategy using aloin to safeguard dental collagen. The effect of aloin on the stability of dental collagen was evaluated by treating dentin with a solution containing aloin (0.1 mg/mL) for 2 min. This concentration is comparable to the natural aloin content of edible aloe. Furthermore, we investigated the mechanisms underlying the interactions between aloin and dentin collagen. Our findings, obtained through fluorescence spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, Gaussian peak fitting, circular dichroism spectroscopy, and X-ray diffraction, revealed that aloin interacts with dental collagen through noncovalent bonding, specifically hydrogen bonding in situ. This interaction leads to a reduction in the distance between molecules and an increase in the proportion of stable α-helical chains in the dental collagen. The ultimate tensile strength and thermogravimetric analysis demonstrated that dental collagen treated with aloin exhibited improved mechanical strength and thermostability. Additionally, the release of hydroxyproline, cross-linked carboxy-terminal telopeptide of type I collagen, and C-terminal cross-linked telopeptide of type I collagen, along with weight loss, indicated an enhancement in the enzymatic stability of dental collagen. These findings suggest that aloin administration could be a daily, nondestructive, and cost-effective strategy for managing infectious oral diseases.

8.
J Hazard Mater ; 476: 135218, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39024771

RESUMEN

Rice cadmium (Cd) and microplastics are prevalent contaminants, posing a co-exposure threat to humans by means of dietary intake. To assess whether co-exposure of microplastics affects the bioavailability of rice Cd, mice were exposed to Cd-contaminated rice with microplastic co-exposure. We found that polyethylene (PE), polystyrene (PS), polypropylene (PP), and polyamide (PA) microplastic co-exposure via diet consumption (2 µg g-1) caused 1.17-1.38-fold higher Cd accumulation in tissue of mice fed by Cd-rice. For mice with co-exposure of PE microplastics, the higher rice-Cd bioavailability corresponded to colonization of Lactobacillus reuteri (38.9 % vs 17.5 %) in the gut compared to control mice, which caused higher production of gut metabolites particularly peptides, likely causing a 'side effect' of elevating Cd solubility in the intestinal lumen. In addition, abundance of sphingosine 1-phosphate in the gut of mice was reduced under PE microplastic exposure, which may reduce intracellular calcium ions (Ca2+) in enterocytes and form a weaker competition in pumping of intracellular Ca2+ and Cd2+ across the basolateral membrane of enterocytes, leading to higher Cd2+ transport efficiency. The results suggest elevated Cd exposure risk from rice consumption with microplastic co-exposure at environmentally relevant low concentrations.


Asunto(s)
Cadmio , Microplásticos , Oryza , Animales , Oryza/metabolismo , Microplásticos/toxicidad , Cadmio/toxicidad , Cadmio/metabolismo , Contaminación de Alimentos , Ratones , Masculino , Exposición Dietética , Disponibilidad Biológica
9.
NPJ Biofilms Microbiomes ; 10(1): 56, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003275

RESUMEN

Dental calculus severely affects the oral health of humans and animal pets. Calculus deposition affects the gingival appearance and causes inflammation. Failure to remove dental calculus from the dentition results in oral diseases such as periodontitis. Apart from adversely affecting oral health, some systemic diseases are closely related to dental calculus deposition. Hence, identifying the mechanisms of dental calculus formation helps protect oral and systemic health. A plethora of biological and physicochemical factors contribute to the physiological equilibrium in the oral cavity. Bacteria are an important part of the equation. Calculus formation commences when the bacterial equilibrium is broken. Bacteria accumulate locally and form biofilms on the tooth surface. The bacteria promote increases in local calcium and phosphorus concentrations, which triggers biomineralization and the development of dental calculus. Current treatments only help to relieve the symptoms caused by calculus deposition. These symptoms are prone to relapse if calculus removal is not under control. There is a need for a treatment regime that combines short-term and long-term goals in addressing calculus formation. The present review introduces the mechanisms of dental calculus formation, influencing factors, and the relationship between dental calculus and several systemic diseases. This is followed by the presentation of a conceptual solution for improving existing treatment strategies and minimizing recurrence.


Asunto(s)
Biopelículas , Cálculos Dentales , Cálculos Dentales/microbiología , Cálculos Dentales/prevención & control , Humanos , Animales , Biopelículas/crecimiento & desarrollo , Bacterias/clasificación , Salud Bucal , Boca/microbiología , Calcio/metabolismo , Fósforo/metabolismo
10.
Adv Sci (Weinh) ; 11(17): e2309624, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38408124

RESUMEN

Mild-heat photothermal antibacterial therapy avoids heat-induced damage to normal tissues but causes bacterial tolerance. The use of photothermal therapy in synergy with chemodynamic therapy is expected to address this issue. Herein, two pseudo-conjugated polymers PM123 with photothermal units and PFc with ferrocene (Fc) units are designed to co-assemble with DSPE-mPEG2000 into nanoparticle NPM123/Fc. NPM123/Fc under 1064 nm laser irradiation (NPM123/Fc+NIR-II) generates mild heat and additionally more toxic ∙OH from endogenous H2O2, displaying a strong synergistic photothermal and chemodynamic effect. NPM123/Fc+NIR-II gives >90% inhibition rates against MDR ESKAPE pathogens in vitro. Metabolomics analysis unveils that NPM123/Fc+NIR-II induces bacterial metabolic dysregulation including inhibited nucleic acid synthesis, disordered energy metabolism, enhanced oxidative stress, and elevated DNA damage. Further, NPM123/Fc+NIR-II possesses >90% bacteriostatic rates at infected wounds in mice, resulting in almost full recovery of infected wounds. Immunodetection and transcriptomics assays disclose that the therapeutic effect is mainly dependent on the inhibition of inflammatory reactions and the promotion of wound healing. What is more, thioketal bonds in NPM123/Fc are susceptible to ROS, making it degradable with highly favorable biosafety in vitro and in vivo. NPM123/Fc+NIR-II with a unique synergistic antibacterial strategy would be much less prone to select bacterial resistance and represent a promising antibiotics-alternative anti-infective measure.


Asunto(s)
Antibacterianos , Modelos Animales de Enfermedad , Nanopartículas , Terapia Fototérmica , Polímeros , Infección de Heridas , Animales , Ratones , Nanopartículas/química , Polímeros/química , Polímeros/farmacología , Infección de Heridas/tratamiento farmacológico , Antibacterianos/farmacología , Terapia Fototérmica/métodos
11.
Biomolecules ; 13(5)2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37238715

RESUMEN

Despite advancements in dental pain management, one of the most common reasons for emergency dental care is orofacial pain. Our study aimed to determine the effects of non-psychoactive Cannabis constituents in the treatment of dental pain and related inflammation. We tested the therapeutic potential of two non-psychoactive Cannabis constituents, cannabidiol (CBD) and ß-caryophyllene (ß-CP), in a rodent model of orofacial pain associated with pulp exposure. Sham or left mandibular molar pulp exposures were performed on Sprague Dawley rats treated with either vehicle, the phytocannabinoid CBD (5 mg/kg i.p.) or the sesquiterpene ß-CP (30 mg/kg i.p.) administered 1 h pre-exposure and on days 1, 3, 7, and 10 post-exposure. Orofacial mechanical allodynia was evaluated at baseline and post-pulp exposure. Trigeminal ganglia were harvested for histological evaluation at day 15. Pulp exposure was associated with significant orofacial sensitivity and neuroinflammation in the ipsilateral orofacial region and trigeminal ganglion. ß-CP but not CBD produced a significant reduction in orofacial sensitivity. ß-CP also significantly reduced the expression of the inflammatory markers AIF and CCL2, while CBD only decreased AIF expression. These data represent the first preclinical evidence that non-psychoactive cannabinoid-based pharmacotherapy may provide a therapeutic benefit for the treatment of orofacial pain associated with pulp exposure.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Pulpitis , Ratas , Animales , Pulpitis/tratamiento farmacológico , Pulpitis/complicaciones , Pulpitis/metabolismo , Cannabinoides/farmacología , Ratas Sprague-Dawley , Nocicepción , Inflamación/metabolismo , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Dolor Facial/tratamiento farmacológico , Dolor Facial/complicaciones
12.
Am J Transl Res ; 15(6): 4279-4290, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37434856

RESUMEN

BACKGROUND: Skin toxicity of varying severity occurs mostly during various courses of chemotherapy. In clinical trials and practice, we have found that both nab-paclitaxel and paclitaxel cause side effects such as rash and pruritus. To further clarify the incidence of rash and pruritus in both, we conducted the present study by a systematic evaluation, the results of which can be used to guide clinical dosing choices. METHODS: An electrical search was performed on randomized controlled research trials of nab-paclitaxel and paclitaxel for the treatment of malignancies. The necessary data were extracted, integrated, and analyzed from the included studies by systematic evaluation and meta-analysis, depending on the study design. Further subgroup analyses were performed to explore the incidence of rash and pruritus in nab-paclitaxel and paclitaxel. RESULTS: Eleven studies with a total of 971 patients with malignancy were included. Four studies were application of single-agent nab-paclitaxel compared with paclitaxel, and seven studies were comparative chemotherapy drug combinations. The incidence of rash was higher in all grades of nab-paclitaxel than that in paclitaxel (OR=1.39, CI 95% [1.18-1.62]); the incidence of rash was higher in lower grades of paclitaxel than that in solvent-based paclitaxel (OR=1.31, CI 95% [1.11-1.53]); the incidence of rash was higher in all grades in the single-agent application comparison. The incidence of rash was higher in nab-paclitaxel than that in paclitaxel (OR=1.81, CI 95% [1.26-2.59]); there was no significant difference in the incidence of pruritus between nab-paclitaxel and paclitaxel (OR=1.19, CI 95% [0.88-1.61]). CONCLUSION: In comparison with paclitaxel, nab-paclitaxel significantly increased the risk of a teething rash. There was a significant risk correlation between nab-paclitaxel and teething rash. Early prevention, identification, and treatment of rash could significantly improve patient's quality of life and optimize their clinical survival.

13.
Comput Biol Med ; 154: 106568, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36739818

RESUMEN

This in vitro study aimed to put forward the development and investigation of a novel Mixed Reality (MR)-based dental implant navigation method and evaluate implant accuracy. Data were collected using 3D-cone beam computed tomography. The MR-based navigation system included a Hololens headset, an NDI (Northern Digital Inc.) Polaris optical tracking system, and a computer. A software system was developed. Resin models of dentition defects were created for a randomized comparison study with the MR-based navigation implantation system (MR group, n = 25) and the conventional free-hand approach (FH group, n = 25). Implant surgery on the models was completed by an oral surgeon. The precision and feasibility of the MR-based navigation method in dental implant surgery were assessed and evaluated by calculating the entry deviation, middle deviation, apex deviation, and angular deviation values of the implant. The system, including both the hardware and software, for the MR-based dental implant navigation method were successfully developed and a workflow of the method was established. Three-Dimensional (3D) reconstruction and visualization of the surgical instruments, dentition, and jawbone were achieved. Real-time tracking of implant tools and jaw model, holographic display via the MR headset, surgical guidance, and visualization of the intraoperative implant trajectory deviation from the planned trajectory were captured by our system. The MR-based navigation system was with better precise than the free-hand approach for entry deviation (MR: 0.6914 ± 0.2507 mm, FH: 1.571 ± 0.5004 mm, P = 0.000), middle deviation (MR: 0.7156 ± 0.2127 mm, FH: 1.170 ± 0.3448 mm, P = 0.000), apex deviation (MR: 0.7869 ± 0.2298 mm, FH: 0.9190 ± 0.3319 mm, P = 0.1082), and angular deviation (MR: 1.849 ± 0.6120°, FH: 4.933 ± 1.650°, P = 0.000).


Asunto(s)
Realidad Aumentada , Implantes Dentales , Cirugía Asistida por Computador , Cirugía Asistida por Computador/métodos , Proyectos Piloto , Tomografía Computarizada de Haz Cónico/métodos , Imagenología Tridimensional/métodos , Diseño Asistido por Computadora
14.
Sci Total Environ ; 885: 163853, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37142045

RESUMEN

Microplastics emerge as a new environmental and human health crisis. Minimal research exists on effects of microplastic ingestion on the oral bioavailability of minerals (Fe, Ca, Cu, Zn, Mn, and Mg) in the gastrointestinal tract via impacting intestinal permeability, mineral transcellular transporters, and gut metabolites. Here, mice were exposed to polyethylene spheres of 30 and 200 µm (PE-30 and PE-200) in diet (2, 20, and 200 µg PE g-1) for 35 d to determine the microplastic effects on mineral oral bioavailability. Results showed that for mice fed diet amended with PE-30 and PE-200 at 2-200 µg g-1, Ca, Cu, Zn, Mn, and Mg concentrations in the small intestine tissue were 43.3-68.8 %, 28.6-52.4 %, 19.3-27.1 %, 12.9-29.9 %, and 10.2-22.4 % lower compared to control mice, suggesting hampered bioavailability of these minerals. In addition, Ca and Mg concentrations in mouse femur were 10.6 % and 11.0 % lower with PE-200 at 200 µg g-1. In contrast, Fe bioavailability was elevated, as suggested by significantly (p < 0.05) higher Fe concentration in the intestine tissue of mice exposed to PE-200 than control mice (157-180 vs. 115 ± 7.58 µg Fe g-1) and significantly (p < 0.05) higher Fe concentrations in liver and kidney with PE-30 and PE-200 at 200 µg g-1. Following PE-200 exposure at 200 µg g-1, genes coding for duodenal expression of tight junction proteins (e.g., claudin 4, occludin, zona occludins 1, and cingulin) were significantly up-regulated, possibility weakening intestinal permeability to Ca, Cu, Zn, Mn, and Mg ions. The elevated Fe bioavailability was possibly related to microplastic-induced greater abundances of small peptides in the intestinal tract, which inhibited Fe precipitation and elevated Fe solubility. Results showed that microplastic ingestion may cause Ca, Cu, Zn, Mn, and Mg deficiency but Fe overload via altering intestinal permeability and gut metabolites, posing a threat to human nutrition health.


Asunto(s)
Microplásticos , Plásticos , Humanos , Animales , Ratones , Microplásticos/metabolismo , Plásticos/metabolismo , Polietileno/metabolismo , Disponibilidad Biológica , Minerales/metabolismo , Dieta , Zinc/metabolismo , Ingestión de Alimentos
15.
Nano Res ; 16(4): 5247-5255, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36532602

RESUMEN

Stable and bioactive material-tissue interface (MTF) basically determines the clinical applications of biomaterials in wound healing, sustained drug release, and tissue engineering. Although many inorganic nanomaterials have been widely explored to enhance the stability and bioactivity of polymer-based biomaterials, most are still restricted by their stability and biocompatibility. Here we demonstrate the enhanced bioactivity and stability of polymer-matrix bio-composite through coupling multiscale material-tissue interfacial interactions with atomically thin TiO2 nanosheets. Resin modified with TiO2 nanosheets displays improved mechanical properties, hydrophilicity, and stability. Also, we confirm that this resin can effectively stimulate the adhesion, proliferation, and differentiation into osteogenic and odontogenic lineages of human dental pulp stem cells using in vitro cell-resin interface model. TiO2 nanosheets can also enhance the interaction between demineralized dentinal collagen and resin. Our results suggest an approach to effectively up-regulate the stability and bioactivity of MTFs by designing biocompatible materials at the sub-nanoscale. Electronic Supplementary Material: Supplementary material (further details of fabrication and characterization of TiO2 NSs and TiO2-ARCs, the bioactivity evaluation of TiO2-ARCs on hDPSCs, and the measurement of interaction with demineralized dentin collagen) is available in the online version of this article at 10.1007/s12274-022-5153-1.

16.
Environ Pollut ; 324: 121376, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36863442

RESUMEN

Microplastics exposure is a new human health crisis. Although progress in understanding health effects of microplastic exposure has been made, microplastic impacts on absorption of co-exposure toxic pollutants such as arsenic (As), i.e., oral bioavailability, remain unclear. Microplastic ingestion may interfere As biotransformation, gut microbiota, and/or gut metabolites, thereby affecting As oral bioavailability. Here, mice were exposed to arsenate (6 µg As g-1) alone and in combination with polyethylene particles of 30 and 200 µm (PE-30 and PE-200 having surface area of 2.17 × 103 and 3.23 × 102 cm2 g-1) in diet (2, 20, and 200 µg PE g-1) to determine the influence of microplastic co-ingestion on arsenic (As) oral bioavailability. By determining the percentage of cumulative As consumption recovered in urine of mice, As oral bioavailability increased significantly (P < 0.05) from 72.0 ± 5.41% to 89.7 ± 6.33% with PE-30 at 200 µg PE g-1 rather than with PE-200 at 2, 20, and 200 µg PE g-1 (58.5 ± 19.0%, 72.3 ± 6.28%, and 69.2 ± 17.8%). Both PE-30 and PE-200 exerted limited effects on pre- and post-absorption As biotransformation in intestinal content, intestine tissue, feces, and urine. They affected gut microbiota dose-dependently, with lower exposure concentrations having more pronounced effects. Consistent with the PE-30-specific As oral bioavailability increase, PE exposure significantly up-regulated gut metabolite expression, and PE-30 exerted greater effects than PE-200, suggesting that gut metabolite changes may contribute to As oral bioavailability increase. This was supported by 1.58-4.07-fold higher As solubility in the presence of up-regulated metabolites (e.g., amino acid derivatives, organic acids, and pyrimidines and purines) in the intestinal tract assessed by an in vitro assay. Our results suggested that microplastic exposure especially smaller particles may exacerbate the oral bioavailability of As, providing a new angle to understand health effects of microplastics.


Asunto(s)
Arsénico , Microbioma Gastrointestinal , Humanos , Animales , Ratones , Microplásticos/química , Plásticos/toxicidad , Disponibilidad Biológica , Arsénico/toxicidad , Compuestos Orgánicos , Polietileno/farmacología
17.
Bioelectrochemistry ; 148: 108246, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36087521

RESUMEN

This study compares carbon felt (CF), granular activated carbon (GAC), and a conductive acrylonitrile butadiene styrene (cABS) polymer cathodes for CH4 and acetate production in a microbial electrosynthesis (MES) cell. At an applied voltage of 2.8 V and continuous CO2 flow, the CF biocathode MES cell showed the highest CH4 production rate of 1420 ± 225 mL Vc-1 d-1 (Vc = cathode volume), also producing acetate at a rate of 710 ± 110 mg Vc-1 d-1. The volumetric rates of acetate and CH4 production decreased when using the GAC cathode (720 ± 94 mL Vc-1 d-1 and 236 ± 65 mg Vc-1 d-1, respectively). When the cABS cathode was used, the CH4 production declined to 250 ± 35 mL Vc-1 d-1, while the acetate production increased to 1105 ± 130 mg Vc-1 d-1. The biocatalytic activity of cABS increased after in-situ electrodeposition of Ni and Fe, resulting in a current increase from 205 mA to 380 mA accompanied by increasing acetate and ethanol production (1405 mg Vc-1 d-1 and 240 mg Vc-1 d-1, respectively), while the CH4 production decreased. The cABS cathode showed the highest specific (per surface area) activity for acetate and CH4 production.


Asunto(s)
Acrilonitrilo , Metano , Acetatos/metabolismo , Butadienos , Dióxido de Carbono/metabolismo , Fibra de Carbono , Carbón Orgánico , Electrodos , Etanol , Estirenos
18.
Front Surg ; 9: 923299, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034400

RESUMEN

Objective: The etiology of apical diseases is diverse, and most are due to incomplete root canal therapy. The common clinical manifestations include gingival abscess, fistula and bone destruction. The currently existing limitation of procedures is that surgeons cannot visually evaluate the surgical areas. We sought to combine mixed reality (MR) technology with a 3-dimensional (3D) printed surgical template to achieve visualization in apical surgery. Notably, no reports have described this application. Methods: We created visual 3D (V3D) files and transferred them into the HoloLens system. We explained the surgical therapy plan to the patient using a mixed reality head-mounted display (MR-HMD). Then, the 3D information was preliminarily matched with the operative area, and the optimal surgical approach was determined by combining this information with 3D surgical guide plate technology. Results: We successfully developed a suitable surgical workflow and confirmed the optimal surgical approach from the buccal side. We completely exposed the apical lesion and removed the inflammatory granulation tissue. Conclusion: We are the first group to use the MR technique in apical surgery. We integrated the MR technique with a 3D surgical template to successfully accomplish the surgery. Desirable outcomes using minimally invasive therapy could be achieved with the MR technique.

19.
Foods ; 11(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36360127

RESUMEN

The objective of the current study was to evaluate the feasibility of papery food with Pleurotus eryngii (P. eryngii) as a raw material using the papermaking process. The physical, chemical, structural, and thermal degradation properties were studied as well as the sensory evaluation of the papery food from P. eryngii mycelia (PMP), stems (PSP), caps (PCP), and whole fruiting bodies (PEP). The results indicated that the colors from PSP, PCP, and PEP were clearly different from PMP. Thicker PSP and PMP had a smoother surface and better crispness compared to PCP. Moreover, PSP had better moisture resistance and thermal decomposition performance compared to the other groups. Nutritional composition and Fourier-transform infrared spectroscopy suggested abundant polysaccharide and protein content in all of the papery food. Finally, sensory evaluation showed that the formability, mouth feel, and overall palatability of PSP and PMP were more popular among consumers. Overall, this study provides a novel method for the preparation of papery food and provides a potential new mechanism for the further development and utilization of the fruiting bodies and mycelium of P. eryngii.

20.
J Dent ; 124: 104240, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35872224

RESUMEN

OBJECTIVES: Infrared dynamic navigation systems can be categorized into active and passive based on whether the surgical instruments can emit or only reflect light. This in vitro study aimed to compare the accuracy of implant placement and the learning curve of both active and passive dynamic navigation systems, using different registration methods. METHODS: Implants (n = 704) were placed in 64 sets of models and divided into active (Yizhime, DCARER, Suzhou, China) and passive (Iris-Clinic, EPED, Kaohsiung, China) dynamic navigation groups. Both marker point-based registration (M-PBR) and feature point-based registration (F-PBR) were employed for the two groups. Based on preoperative and postoperative cone-beam computed tomography imaging, the coronal, midpoint, apical, and angular deviations were analyzed from 2D and 3D views. The operation time was recorded for each group. RESULTS: The active dynamic navigation group exhibited significantly higher accuracy than the passive dynamic navigation group (angular deviation, 4.13 ± 2.39° versus 4.62 ± 3.32°; coronal global deviation, 1.48 ± 0.60 versus 1.86 ± 1.12 mm; apical global deviation, 1.75 ± 0.81 versus 2.20 ± 1.68 mm, respectively). Significant interaction effects were observed for both registration methods and four quadrants with different dynamic navigation systems. Learning curves for the two dynamic navigation groups approached each other after 12 procedures, and finally converged after 27 procedures. CONCLUSIONS: The accuracy of active dynamic navigation system was superior to that of passive dynamic navigation system. Different combinations of dynamic navigation systems, registration methods, and implanted quadrants displayed various interactions. CLINICAL SIGNIFICANCE: Our findings could provide guidance for surgeons in choosing an appropriate navigation system in various implant surgeries. Furthermore, the time required by surgeons to master the technique was calculated. Nevertheless, there are certain limitations in this in vitro study, and therefore further research is required.


Asunto(s)
Implantes Dentales , Cirugía Asistida por Computador , Tomografía Computarizada de Haz Cónico , Implantación Dental Endoósea/métodos , Imagenología Tridimensional/métodos , Curva de Aprendizaje , Cirugía Asistida por Computador/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA