Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemosphere ; 337: 139206, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37315863

RESUMEN

In this study, a WO3/g-C3N4 composite photocatalyst was synthesized via a hydrothermal method and characterized for its potential application in photocatalytic H2 generation from PET degradation. XRD analysis revealed that the hexagonal WO3 crystal structure was achieved after 10 h of hydrothermal time, with particles of suitable size for uniform loading on the g-C3N4 surface. SEM images showed the successful loading of WO3 nanorods onto the g-C3N4 surface, significantly increasing the specific surface area. FTIR and UV-vis diffuse reflectance spectroscopy confirmed the formation of a Z-type heterojunction between WO3 and g-C3N4. Photoluminescence measurements indicated a reduced rate of electron-hole pair recombination in the composite. The 30% WO3/g-C3N4 composite demonstrated a high H2 evolution rate of 14.21 mM and excellent stability in PET solution under visible light irradiation. 1H NMR and EPR spectroscopy analyses revealed the degradation of PET into small molecular compounds and the generation of active radicals, including ·O2-, during the reaction. Overall, the WO3/g-C3N4 composite exhibited promising potential for photocatalytic H2 production and PET degradation.


Asunto(s)
Microplásticos , Agua , Plásticos
2.
Food Funct ; 14(8): 3779-3792, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36995104

RESUMEN

This study was designed to investigate the influence and effect mechanism of the filler type on the physicochemical properties, microbial numbers, and digestibility of ovalbumin emulsion gels (OEGs) during storage. Sunflower oil was emulsified with ovalbumin (20 mg mL-1) and Tween 80 (20 mg mL-1) separately to prepare ovalbumin emulsion gels (OEGs) that contained active and inactive fillers, respectively. The formed OEGs were stored at 4 °C for 0, 5, 10, 15, and 20 days. The active filler enhanced the gel hardness, water holding capacity, fat holding capacity, and surface hydrophobicity and decreased the digestibility and free sulfhydryl content during storage compared to control (unfilled) ovalbumin gel, whereas the inactive filler had the opposite effects. Protein aggregation diminished, lipid particle aggregation increased, and the amide A band shifted to a higher wavenumber for all three types of gel during storage, suggesting that the compact network structure of the OEG became rough and disordered with storage. The OEG with the active filler did not inhibit microbial growth, and the OEG with the inactive filler did not significantly promote the development of bacteria. In addition, the active filler delayed the in vitro digestion of the protein in the OEG throughout storage. Emulsion gels containing active filler facilitated the retention of the gel properties during storage, whereas emulsion gels containing inactive filler exacerbated the loss of the gel properties during storage.


Asunto(s)
Polisorbatos , Proteínas , Emulsiones/química , Ovalbúmina , Geles/química
3.
Front Public Health ; 11: 1103289, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275491

RESUMEN

Micro/nano-plastics (MNPs) are considered a heterogeneous class of environmental contaminants that cause multiple toxic effects on biological species. As the commonly used mammalian models to study the effects of MNPs with regard to their toxic effects, the mouse and rat models are making a great contribution to the disciplines of environmental toxicology and medical health. However, the toxic effects of MNPs have not been systematically summarized. Therefore, a systematic review and a meta-analysis of the toxic effects of MNPs on mouse/rat models were conducted. A total of seven main categories were established in this systematic review, and 24 subcategories were further divided according to the specific physiological significance of the endpoint or the classification of the physiological system, which covered all the selected pieces of literature. A total of 1,762 biological endpoints were found, and 52.78% of them were significantly affected. This fact indicates that there are relative factors, including the size, polymer type, concentration, and exposure time of MNPs and different sexes of mouse/rat models that could significantly affect the biological endpoints. These biological endpoints can be classified into various factors, such as the dose-response relationships between MNP concentration and physiological categories of the nervous system, growth, reproduction, digestive tract histopathology, and inflammatory cytokine level, among others. MNPs negatively affected the blood glucose metabolism, lipid metabolism, and reproductive function in mice. The reproductive function in male mice is more sensitive to the toxic effects of MNPs. These findings also provide insights into and directions for exploring the evidence and mechanisms of the toxic effects of MNPs on human health. It is clear that more research is required on the pathological mechanisms at the molecular level and the long-term effects of tissue accumulation.


Asunto(s)
Microplásticos , Plásticos , Ratas , Ratones , Masculino , Humanos , Animales , Microplásticos/análisis , Mamíferos
4.
Food Chem ; 372: 131319, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34818739

RESUMEN

In this study, the improvement of gel properties and digestibility of the water-soluble polymer of tea polyphenol (TP)-egg white protein (TEP) under heat induction (HTEP), was studied. Results indicated that the particle size and turbidity of TEP increased with TP concentration, and the absolute value of ζ-potential decreased. After heat induction, the surface hydrophobicity of HTEP decreased with TP concentration, and the degree of protein aggregation increased. Microstructure and T2 showed that the gel structure became compact and stable, and HTEP had a strong water-binding ability. The ionic and disulfide bonds were the main chemical bonds in HTEP. The hardness and disulfide bond increased, but the digestion of HTEP increased initially and then decreased (caused by the change of gel structure). Infrared spectroscopy indicated the mutual conversion of intermolecular and intramolecular ß-sheets. In short, TP could modify egg white gel through forming stable disulfide bonds and dense gel network structures.


Asunto(s)
Polifenoles , Agua , Geles , Polímeros ,
5.
Bioresour Technol ; 337: 125453, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34320738

RESUMEN

The utilization of lignin as carbonaceous material for pollution adsorption provides an alternative way for lignocellulose valorization. Here in, lignin-based adsorbents (i.e., LC-A, LC-B, and LC-C) were prepared and used for the removal of o-DCB (a toxic gaseous pollutant). LC-B exhibited the best adsorption capacity (718.2 mg/g) when comparing with LC-A (93.1 mg/g), LC-C (10.2 mg/g), and activated carbon (72.7 mg/g). LC-B also demonstrated excellent recycling stability with the adsorption capacity of 710.8 mg/g after five runs. More importantly, LC-B supported Ru adsorbent catalyst could effectively remove o-DCB with removal rate >80% under a wide range of temperature (50-300°C). The excellent performance of lignin-based adsorbents could be attributed to its abundant pore structure, high specific surface area (1618.55 m2/g), enhanced graphitization degree as well as the abundant hydroxyl functional groups. The present work provided a cost-effective strategy for pollution control by lignin-based material.


Asunto(s)
Carbón Orgánico , Lignina , Adsorción , Contaminación Ambiental , Temperatura
6.
J Mech Behav Biomed Mater ; 91: 149-158, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30579112

RESUMEN

A new sintering technique using Ti6Al4V powder suspension was performed to prepare porous Ti6Al4V alloy with 75% porosity. Porous Ti6Al4V alloy with the same porosity fabricated by selective laser melting technique was used as the control. The characteristics, mechanical and biological properties of the two types of porous Ti6Al4V alloys were evaluated by mechanical tests, in vitro cell analysis and implantations. Results indicated that both groups showed good biocompatibility and osteogenic ability. However, microstructure and mechanical properties of the sintered porous Ti6Al4V were more similar to the cancellous bone without obvious stress shielding, and the new type of sample may be more effective in achieving early stability after implantation. Therefore, under the study conditions, this new type of porous alloy prospects a good candidate for biomaterials, especially for repairing bone defects and arthroplasty in orthopedics.


Asunto(s)
Rayos Láser , Transición de Fase , Titanio/química , Aleaciones , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayo de Materiales , Osteogénesis/efectos de los fármacos , Porosidad , Conejos , Titanio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA