Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Periodontal Res ; 57(3): 533-544, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35266182

RESUMEN

AIM(S): The objective of this study was to evaluate the changes in the physical and chemical properties of titanium surfaces contaminated by a Nd:YAG laser with different levels of energy and the regulation of macrophage polarization. MATERIALS AND METHODS: The titanium specimens were divided into four groups. The blank control group consisted of the above-mentioned contaminated titanium specimens, and the conditioned control group consisted of sandblasted and acid-etched (SLA) titanium surfaces. The blank control and condition control groups were sealed and preserved in a sterile dark box. There were two experimental groups treated with the Nd:YAG laser-one with 0.5 W and the second with 1.0 W. Surface characteristics were evaluated using scanning electron microscopy, surface profilometry, and contact angle assays. The macrophage viability and proliferation of mouse RAW246.7 were analysed, and the macrophage surface markers, macrophage cytokines, and inflammatory and anti-inflammatory genes were expressed. RESULTS: The Nd:YAG laser increased the hydrophilicity and roughness of the titanium surface after decontamination. Fewer RAW264.7 cells were observed on the titanium surface after Nd:YAG decontamination than on the contaminated titanium surface expressing the M1-type macrophage marker CCR7, whereas more cells were observed after decontamination than on the contaminated titanium surface expressing the M2-type macrophage marker CD206. Following Nd:YAG laser treatment, the secretion of the inflammatory cytokines IL-1ß and TNF-α by RAW264.7 cells on the titanium surface was decreased, whereas the secretion of the anti-inflammatory cytokines IL-4 and IL-10 was increased. RAW264.7 cells cultured for 3 days on the titanium surface after Nd:YAG decontamination treatment expressed significantly reduced levels of the inflammation-related genes IL-1ß, TNF-α, IL-6 and iNOS. The expression of the anti-inflammatory genes Arg-1, IL-4, IL-10 and TGF-ß by RAW264.7 cells was significantly up-regulated after 3 days of incubation on the titanium surface after Nd:YAG decontamination treatment. CONCLUSION(S): The Nd:YAG laser increased the hydrophilicity and roughness of the titanium surface after decontamination, and this change inhibited M1-type macrophage polarization and promoted M2-type macrophage polarization.


Asunto(s)
Implantes Dentales , Láseres de Estado Sólido , Animales , Interleucina-10 , Interleucina-4 , Macrófagos , Ratones , Microscopía Electrónica de Rastreo , Neodimio , Propiedades de Superficie , Titanio/química , Factor de Necrosis Tumoral alfa , Itrio
2.
J Appl Clin Med Phys ; 23(8): e13667, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35670318

RESUMEN

PURPOSE: Accurate positioning of multileaf collimator (MLC) leaves during volumetric modulated arc therapy (VMAT) is essential for accurate treatment delivery. We developed a linear regression, support vector machine, random forest, extreme gradient boosting (XGBoost), and an artificial neural network (ANN) for predicting the delivered leaf positions for VMAT plans. METHODS: For this study, 160 MLC log files from 80 VMAT plans were obtained from a single institution treated on 3 Elekta Versa HD linear accelerators. The gravity vector, X1 and X2 jaw positions, leaf gap, leaf position, leaf velocity, and leaf acceleration were extracted and used as model inputs. The models were trained using 70% of the log files and tested on the remaining 30%. Mean absolute error (MAE), root mean square error (RMSE), the coefficient of determination R2 , and fitted line plots showing the relationship between delivered and predicted leaf positions were used to evaluate model performance. RESULTS: The models achieved the following errors: linear regression (MAE = 0.158 mm, RMSE = 0.225 mm), support vector machine (MAE = 0.141 mm, RMSE = 0.199 mm), random forest (MAE = 0.161 mm, RMSE = 0.229 mm), XGBoost (MAE = 0.185 mm, RMSE = 0.273 mm), and ANN (MAE = 0.361 mm, RMSE = 0.521 mm). A significant correlation between a plan's gamma passing rate (GPR) and the prediction errors of linear regression, support vector machine, and random forest is seen (p < 0.045). CONCLUSIONS: We examined various models to predict the delivered MLC positions for VMAT plans treated with Elekta linacs. Linear regression, support vector machine, random forest, and XGBoost achieved lower errors than ANN. Models that can accurately predict the individual leaf positions during treatment can help identify leaves that are deviating from the planned position, which can improve a plan's GPR.


Asunto(s)
Aprendizaje Automático , Radioterapia de Intensidad Modulada , Humanos , Aceleradores de Partículas , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
3.
J Morphol ; 285(1): e21657, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38100745

RESUMEN

Studies of teleost teeth are important for understanding the evolution and mechanisms of tooth development, replacement, and regeneration. Here, we used gross specimens, microcomputed tomography, and histological analysis to characterize tooth structure, development, and resorption patterns in adult Pelteobagrus fulvidraco. The oral and pharyngeal teeth are villiform and conical. Multiple rows of dentition are densely distributed and the tooth germ is derived from the epithelium. P. fulvidraco exhibits a discontinuous and non-permanent dental lamina. Epithelial cells surround the teeth and are separated into distinct tooth units by mesenchymal tissue. Tooth development is completed in the form of independent tooth units. P. fulvidraco does not undergo simultaneous tooth replacement. Based on tooth development and resorption status, five forms of teeth are present in adult P. fulvidraco: developing tooth germs, accompanied by relatively immature tooth germs; mature and well-mineralized tooth accompanied by one tooth germ; teeth that have begun resorption, but not completely fractured; fractured teeth with only residual attachment to the underlying bone; and teeth that are completely resorbed and detached. Seven biological stages of a tooth in P. fulvidraco were also described.


Asunto(s)
Bagres , Diente , Animales , Diente/diagnóstico por imagen , Microtomografía por Rayos X , Odontogénesis , Germen Dentario/diagnóstico por imagen
4.
Biomater Sci ; 12(12): 3003-3026, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38695621

RESUMEN

Janus structure hydrogels (JSHs) are novel materials. Their primary fabrication methods and various applications have been widely reported. JSHs are primarily composed of Janus particles (JNPs) and polysaccharide components. They exhibit two distinct physical or chemical properties, generating intriguing characteristics due to their asymmetric structure. Normally, one side (adhesive interface) is predominantly constituted of polysaccharide components, primarily serving excellent adhesion. On the other side (functional surface), they integrate diverse functionalities, concurrently performing a plethora of synergistic functions. In the biomedical field, JSHs are widely applied in anti-adhesion, drug delivery, wound healing, and other areas. It also exhibits functions in seawater desalination and motion sensing. Thus, JSHs hold broad prospects for applications, and they possess significant research value in nanotechnology, environmental science, healthcare, and other fields. Additionally, this article proposes the challenges and future work facing these fields.


Asunto(s)
Hidrogeles , Hidrogeles/química , Hidrogeles/farmacología , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Animales , Polisacáridos/química , Sistemas de Liberación de Medicamentos , Cicatrización de Heridas/efectos de los fármacos
5.
Med Phys ; 51(2): 898-909, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38127972

RESUMEN

BACKGROUND: Radiotherapy dose predictions have been trained with data from previously treated patients of similar sites and prescriptions. However, clinical datasets are often inconsistent and do not contain the same number of organ at risk (OAR) structures. The effects of missing contour data in deep learning-based dose prediction models have not been studied. PURPOSE: The purpose of this study was to investigate the impacts of incomplete contour sets in the context of deep learning-based radiotherapy dose prediction models trained with clinical datasets and to introduce a novel data substitution method that utilizes automated contours for undefined structures. METHODS: We trained Standard U-Nets and Cascade U-Nets to predict the volumetric dose distributions of patients with head and neck cancers (HNC) using three input variations to evaluate the effects of missing contours, as well as a novel data substitution method. Each architecture was trained with the original contour (OC) inputs, which included missing information, hybrid contour (HC) inputs, where automated OAR contours generated in software were substituted for missing contour data, and automated contour (AC) inputs containing only automated OAR contours. 120 HNC treatments were used for model training, 30 were used for validation and tuning, and 44 were used for evaluation and testing. Model performance and accuracy were evaluated with global whole body dose agreement, PTV coverage accuracy, and OAR dose agreement. The differences in these values between dataset variations were used to determine the effects of missing data and automated contour substitutions. RESULTS: Automated contours used as substitutions for missing data were found to improve dose prediction accuracy in the Standard U-Net and Cascade U-Net, with a statistically significant difference in some global metrics and/or OAR metrics. For both models, PTV coverage between input variations was unaffected by the substitution technique. Automated contours in HC and AC datasets improved mean dose accuracy for some OAR contours, including the mandible and brainstem, with a greater improvement seen with HC datasets. Global dose metrics, including mean absolute error, mean error, and percent error were different for the Standard U-Net but not for the Cascade U-Net. CONCLUSION: Automated contours used as a substitution for contour data improved prediction accuracy for some but not all dose prediction metrics. Compared to the Standard U-Net models, the Cascade U-Net achieved greater precision.


Asunto(s)
Neoplasias de Cabeza y Cuello , Órganos en Riesgo , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/radioterapia , Dosificación Radioterapéutica , Programas Informáticos
6.
Environ Pollut ; 351: 124026, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38663509

RESUMEN

To develop a highly efficient adsorbent to remediate and remove hexavalent chromium ions (Cr(VI)) from polluted water, cellulose acetate (CA) and chitosan (CS), along with metal oxides (titanium dioxide (TiO2) and ferroferric oxide (Fe3O4)), and a zirconium-based metal-organic framework (UiO-66) were used to fabricate the composite porous nanofiber membranes through electrospinning. The adsorption performance, influencing factors, adsorption kinetics and isotherms of composite nanofiber membranes were comprehensively investigated. The multi-layer membrane with interpenetrating nanofibers and surface functional groups enhanced the natural physical adsorption and provided potential chemical sites. The thermal stability was improved by introducing TiO2 and UiO-66. CA/CS/UiO-66 exhibited the highest adsorption capacity (118.81 mg g-1) and removal rate (60.76%), which were twice higher than those of the control. The correlation coefficients (R2) of all the composite nanofibers regressed by the Langmuir model were significantly higher than those by the Freundlich model. The pseudo-first-order kinetic curve of CA/CS composite nanofibers showed the highest R2 (0.973), demonstrating that the whole adsorption process involved a combination of strong physical adsorption and weak chemical adsorption by the amino groups of CS. However, the R2 values of the pseudo-second-order kinetic model increased after incorporating TiO2, Fe3O4, and UiO-66 into the CA/CS composite nanofiber membranes since an enhanced chemical reaction with Cr (VI) occured during the adsorption.


Asunto(s)
Cromo , Estructuras Metalorgánicas , Nanofibras , Titanio , Contaminantes Químicos del Agua , Cromo/química , Nanofibras/química , Estructuras Metalorgánicas/química , Adsorción , Contaminantes Químicos del Agua/química , Titanio/química , Porosidad , Biomasa , Cinética , Circonio/química , Quitosano/química , Celulosa/química , Celulosa/análogos & derivados
7.
ACS Omega ; 7(43): 39214-39223, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36340077

RESUMEN

The formation of biomaterials such as enamel, dentin, and bone is important for many organisms, and the mechanical properties of biomaterials are affected by a wide range of structural and chemical factors. Special dentins exist in extant aquatic gnathostomes, and many more are present in fossils. When a layer of compact orthodentine surrounds the porous osteodentine core in the crown, the composite dentin is called pseudoosteodentine. Using various high-resolution analytical techniques, including micro-computed tomography (micro-CT), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and nanoindentation, we analyzed the micro- and nanostructures, chemical composition, and mechanical properties of pseudoosteodentine in the Pacific cutlassfish, Trichiurus lepturus teeth. Nanoscale oval-shaped hydroxyapatite (HA) crystals were distributed in a disordered manner in the pseudoosteodentine, and a cross-sectional analysis showed that the mineral crystallinity and crystalline particle size of the outer orthodentine were greater than those of middle and inner osteodentine. Moreover, the outer orthodentine comprised a mixture of smaller crystals and larger, more mature crystals. The nano-hardness and nano-stiffness of outer orthodentine were significantly higher than those of middle and inner osteodentine along a radical direction. The hardness and stiffness of pseudoosteodentine were inversely proportional to its magnesium (Mg) content. These data are consistent with the concept that Mg delays crystal maturation. The crystal size, crystallinity, nano-hardness, and nano-stiffness of pseudoosteodentine all decreased commensurately with the increase of its Mg concentration. The pseudoosteodentine of T. lepturus also can be regarded as a functional gradient material (FGM) because its mechanical properties are closely related to its chemical composition and nanostructure. Special pseudoosteodentine may therefore serve as a design standard for biomimetic synthetic mineral composites.

8.
J Colloid Interface Sci ; 612: 355-366, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-34998195

RESUMEN

Intracellular formation of therapeutic agents has become one of the effective ways for cancer-specific treatment. Herein, a tumor acidity-activatable photothermal/Fenton nanoagent (denoted as CoPy) was constructed based on oxidized zeolitic imidazolate framework-67 (oxZIF-67) nanosheet and pyrrole (Py) monomer for synergistic therapy. The CoPy showed negligible toxicity to normal cell models RAW264.7 and 3T3 cell lines, and could be degraded by ascorbic acid in normal physiological conditions. However, once uptaken by 4T1 cells, the acidic pH led to the release of Co3+, which served as a strong oxidant to induce the polymerization of Py to form polypyrrole (PPy) for site-specific photothermal therapy (PTT). Most appealingly, the PPy could chelate the generated Co2+ in the polymerization process to initiate the Fenton-like reaction, which was more capable to produce highly toxic hydroxyl radical (•OH) for chemodynamic therapy (CDT) compared to the free Co2+ ones. In vitro and in vivo experiments demonstrated that all functionalities on CoPy worked collaboratively, and 78% of tumors were inhibited through cooperative PTT/CDT. Such a novel therapeutic nanoagent with tumor selectivity opens new opportunities for combinational treatment paradigms.


Asunto(s)
Nanopartículas , Neoplasias , Línea Celular Tumoral , Humanos , Radical Hidroxilo , Neoplasias/tratamiento farmacológico , Polímeros , Pirroles , Nanomedicina Teranóstica
9.
PLoS One ; 15(8): e0237536, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32790719

RESUMEN

Melatonin is effective in enhancing various abiotic stress resistances of plants. However, its underlying mechanisms in drought-resistance in winter wheat (Triticum aestivum L.) is not clear. The goal of this work was to investigate the effect of melatonin on seed germination and to evaluate leaf antioxidant physiology for two wheat varieties. Experiments included 20% PEG, melatonin plus 20% PEG and a control using two contrasting wheat varieties (JM22- drought sensitive and HG35- drought resistant). Melatonin levels were 0, 1, 10, 100 and 300 µmol L-1. Results revealed that 300 µmol L-1 of melatonin alleviated the negative effect of water stress on germination and increased radicle length, radicle number, and plumule length of the germinated seeds. Principal component analysis showed a significant change in amino acid content during germination and this change was dependent on melatonin concentration and the variety. Lysine (Lys) content in wheat seeds under the PEG plus 300 µmol L-1 melatonin treatment increased compared with that of the seeds under PEG alone. There was a significant and positive correlation between Lys content and morphological index of germination. During seedling growth, soluble protein was involved in osmotic adjustment and superoxide dismutase (SOD) activity was increased to mitigate the damage in the cytomembrane of JM 22 leaf under 300 µmol L-1 melatonin plus PEG treatment. The effect of melatonin was dependent on SOD activity increasing significantly for HG35-a drought resistant variety. The results of this work lays a foundation for further studies to determine if melatonin can be economically used to mitigate the impact of dry planting conditions on wheat productivity in North China Plain.


Asunto(s)
Antioxidantes/farmacología , Germinación/efectos de los fármacos , Melatonina/farmacología , Polietilenglicoles/toxicidad , Semillas/efectos de los fármacos , Estrés Fisiológico , Triticum/efectos de los fármacos , Sequías , Ósmosis , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Triticum/crecimiento & desarrollo , Triticum/metabolismo
10.
ACS Biomater Sci Eng ; 3(12): 3553-3562, 2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33445390

RESUMEN

Tooth enamel can be eroded by the local cariogenic bacteria in plaque or nonbacterial factors in the oral environment. The damage is irreversible in most situations. For the etched human tooth enamel to be restored in situ, a salivary-acquired pellicle (SAP) bioinspired tannic acid (SAP-TA) is synthesized. Statherin is one of the SAP proteins that can selectively adsorb onto enamel surface. Peptide sequence DDDEEKC is a bioinspired sequence of statherin and has the adsorption capacity of hydroxyapatite (HAP). TA has abundant polyphenol groups that can grasp Ca2+ in saliva to induce the regeneration of HAP crystal. Hence, SAP-TA not only enhances the binding force at the interface of remineralization but also mimics the biomineralization process of tooth enamel. Moreover, ferric ion can coordinate with SAP-TA to form a compact coating that increases the adsorbed amounts of SAP-TA on tooth enamel. Compared with SAP-TA alone, the etched enamels treated with SAP-TA/Fe(III) have a better remineralization effect and mechanical properties (surface microhardness recovery >80% and binding force of 64.85 N) when being incubated in artificial saliva for 2 weeks. In vivo remineralization performance is evaluated in a classical rat caries model. The polarizing microscope and micro-CT results show that SAP-TA/Fe(III) has a good effect on the remineralization process in a real oral environment, indicating that it is a promising repair material for in situ remineralization of enamel.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA