Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 323: 116234, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36261962

RESUMEN

Due to the mass production and daily use of plastic products, the potential toxicity of microplastics to the water environment has attracted worldwide attention. In this work, the effect of typical microplastics (PET) on the performance of activated sludge from membrane bioreactors (MBR) was evaluated. The impacts on biological removal efficiency were unconspicuous with continuous dosing of 60 particles/L. However, further investigations revealed that PET particle accumulation caused adverse impacts on settleability and dewaterability. The SVI value increased from 53.3 ml/g MLSS to 69.9 ml/g MLSS and the CST in the PET reactor increased by 22%. Nevertheless, hydrophobicity was reduced by 49.2%. Mechanism studies exposed that the PET microplastics accumulation improved extracellular polymeric substances (EPS) from 116.96 mg/L to 138.70 mg/L and caused cell membrane damage. The abundance and diversity of microbial community reduced in activated sludge in PET reactor compared with control reactor. These phenomena revealed a possible hypothesis that the microplastic particles increased EPS and cytotoxicity of activated sludge. However, the rate of transmembrane pressure (TMP) build-up was significantly mitigated in PET-MBR compared to that in a control-MBR (1.27 folds), which attributes that physical scour of particles may still alleviate membrane contamination in MBR.


Asunto(s)
Microplásticos , Aguas del Alcantarillado , Microplásticos/toxicidad , Plásticos , Tereftalatos Polietilenos , Membranas Artificiales , Reactores Biológicos , Agua
2.
J Environ Manage ; 302(Pt A): 113995, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34700080

RESUMEN

Microplastics (MPs) have recently attracted much attention due to their widespread distribution in the aquatic environment. Microplastics can act as a vector of heavy metals in the aquatic environment, causing a potential threat to aquatic organisms and human health. This review mainly summarized the occurrence of microplastics in the aquatic environment and their interaction with heavy metals. Then, we considered the adsorption mechanisms of MPs and heavy metals, and further critically discussed the effects of microplastics properties and environmental factors (e.g., pH, DOM, and salinity) on the adsorption of heavy metals. Finally, the potential risks of combined exposure of MPs and heavy metals to aquatic biota were briefly evaluated. This work aims to provide a theoretical summary of the interaction between MPs and heavy metals, and is expected to serve as a reference for the accurate assessment of their potential risks in future studies.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Humanos , Metales Pesados/toxicidad , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
3.
Water Res ; 234: 119830, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36889086

RESUMEN

Bacterial quorum quenching (QQ) is an effective strategy for controlling biofouling in membrane bioreactor (MBR) by interfering the releasing and degradation of signal molecules during quorum sensing (QS) process. However, due to the framework feature of QQ media, the maintenance of QQ activity and the restriction of mass transfer threshold, it has been difficult to design a more stable and better performing structure in a long period of time. In this research, electrospun fiber coated hydrogel QQ beads (QQ-ECHB) were fabricated by using electrospun nanofiber coated hydrogel to strengthen layers of QQ carriers for the first time. The robust porous PVDF 3D nanofiber membrane was coated on the surface of millimeter-scale QQ hydrogel beads. Biocompatible hydrogel entrapping quorum quenching bacteria (sp.BH4) was employed as the core of the QQ-ECHB. In MBR with the addition of QQ-ECHB, the time to reach transmembrane pressure (TMP) of 40 kPa was 4 times longer than conventional MBR. The robust coating and porous microstructure of QQ-ECHB contributed to keeping a lasting QQ activity and stable physical washing effect at a very low dosage (10g beads/5L MBR). Physical stability and environmental-tolerance tests also verified that the carrier can maintain the structural strength and keep the core bacteria stable when suffering long-term cyclic compression and great fluctuations in sewage quality.


Asunto(s)
Incrustaciones Biológicas , Percepción de Quorum , Incrustaciones Biológicas/prevención & control , Membranas Artificiales , Aguas del Alcantarillado/microbiología , Bacterias/metabolismo , Reactores Biológicos/microbiología
4.
J Hazard Mater ; 431: 128643, 2022 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-35359106

RESUMEN

In this study, the adsorption behavior of Pb(II) on natural-aged and virgin microplastics in different electrolyte solutions was investigated. The results demonstrated that natural-aged microplastics exhibited higher adsorption capacity for Pb(II) compared to virgin ones, and the addition of CaCl2 strongly inhibited the adsorption amount of Pb(II). The adsorption kinetics of Pb(II) adsorption were better fitted by the pseudo-second order model and Elovich equation, and were slowed down greatly at higher ionic strength. The rate-limiting steps of adsorption process were dominated by intra-particle diffusion. The adsorption isotherm of Pb(II) onto microplastics affected by salt ions can be well described by Freundlich model, the greater adsorption efficiency of natural-aged microplastics proved that adsorption process was multilayer and heterogeneous. In addition, pH significantly influenced the adsorption of Pb(II) due to the changes electrostatic interactions. The effect of fulvic acid in the electrolyte solutions was also revealed and attributed to the complexation with Na+ and Ca2+. Furthermore, the higher pH and ionic strength in different environmental water dramatically decreased adsorption capacity onto microplastics. Finally, it's confirmed that the adsorption mechanisms affected by salt ions mainly involve electrostatic interaction, surface complexation, and ionic exchange. These findings indicate that salt ions exert an important influence on the adsorption of heavy metals for MPs, which should be further concerned.


Asunto(s)
Microplásticos , Plásticos , Adsorción , Iones , Plomo
5.
Enzyme Microb Technol ; 148: 109813, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34116759

RESUMEN

Quorum quenching (QQ) has been proven to be an effective method to reduce MBR membrane biological contamination. In this paper, a novel and efficient QQ-PAC core-shell beads were prepared for mitigating the membrane contamination. The bead was composed of two parts: QQ bacteria embedded in the core and PAC in the shell. The microstructure of the bead was observed by scanning electron microscopy (SEM) and the functional groups were revealed by Fourier transform infrared spectroscopy (FTIR). Meanwhile, the mechanical strength, swelling property, penetration property and QQ activity of the core bead, the core shell-without PAC bead and the core shell-with PAC bead were compared. The core shell-with PAC structure improved the adsorption capacity under good mass transfer conditions. Besides, the combined effect of QQ bacteria and PAC enhanced the QQ effect and alleviated the process of MBR membrane biological contamination consequently. Therefore, the QQ-PAC core-shell beads have a potential possibility in MBR membrane fouling control as the immobilization technology of QQ bacteria.


Asunto(s)
Incrustaciones Biológicas , Percepción de Quorum , Bacterias , Incrustaciones Biológicas/prevención & control , Reactores Biológicos , Membranas Artificiales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA