Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genome Res ; 29(11): 1805-1815, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31649058

RESUMEN

Hybridization drives rapid speciation by shaping novel genotypic and phenotypic profiles. Genomic incompatibility and transcriptome shock have been observed in hybrids, although this is rarer in animals than in plants. Using the newly sequenced genomes of the blunt snout bream (Megalobrama amblycephala [BSB]) and the topmouth culter (Culter alburnus [TC]), we focused on the sequence variation and gene expression changes in the reciprocal intergeneric hybrid lineages (F1-F3) of BSB × TC. A genome-wide transcriptional analysis identified 145-974 expressed recombinant genes in the successive generations of hybrid fish, suggesting the rapid emergence of allelic variation following hybridization. Some gradual changes of gene expression with additive and dominance effects and various cis and trans regulations were observed from F1 to F3 in the two hybrid lineages. These asymmetric patterns of gene expression represent the alternative strategies for counteracting deleterious effects of the subgenomes and improving adaptability of novel hybrids. Furthermore, we identified positive selection and additive expression patterns in transforming growth factor, beta 1b (tgfb1b), which may account for the morphological variations of the pharyngeal jaw in the two hybrid lineages. Our current findings provide insights into the evolution of vertebrate genomes immediately following hybridization.


Asunto(s)
Alelos , Cyprinidae/genética , Hibridación Genética , Animales , Femenino , Masculino , Polimorfismo Genético , Análisis de Secuencia/métodos , Especificidad de la Especie
2.
Materials (Basel) ; 11(5)2018 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-29701651

RESUMEN

Titanium and its alloys are frequently employed in medical and dental clinics due to their good tissue compatibility, including commercially available pure Ti, Ti6A4V, or Ti-15Zr-4Ta-4Nb. Yet, they may behave very differently when in contact with our plasma because of their own chemical composition. The present study was designed to compare the in vitro behavior of highly pure Ti (>99.99%; hpTi) with those of the above titanium specimens when they were subjected to heating in air (HT), H2O2 and heating (CHT), and heating in air after forming grooves on the surface (GT). Since one of the measures of material-tissue compatibility has been in vitro apatite formation in artificial plasma, like simulated body fluid (SBF) of the Kokubo recipe, the apatite deposition in SBF on their surface and in their grooves were examined in terms of the X-ray diffraction, scanning electron microscopy, and energy dispersion X-ray analysis. The results showed that hpTi was as active in in vitro apatite deposition as the other reference titanium samples mentioned above. Moreover, GT specimens of hpTi induced apatite deposition on the platform of the grooves as well as in the grooves. Therefore, hpTi was concluded to have better activity, and to be clinically applicable.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA