Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Physiol ; 239(3): e31062, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37357387

RESUMEN

It has been known that periodontal ligament-associated protein-1 (PLAP-1/Asporin) not only inhibits cartilage formation in osteoarthritis, but it also influences the healing of skull defect. However, the effect and mechanism of PLAP-1/Asporin on the mutual regulation of osteoclasts and osteoblasts in periodontitis are not clear. In this study, we utilized a PLAP-1/Asporin gene knockout (KO) mouse model to research this unknown issue. We cultured mouse bone marrow mesenchymal stem cells with Porphyromonas gingivalis lipopolysaccharide (P.g. LPS) for osteogenic induction in vitro. The molecular mechanism of PLAP-1/Asporin in the regulation of osteoblasts was detected by immunoprecipitation, immunofluorescence, and inhibitors of signaling pathways. The results showed that the KO of PLAP-1/Asporin promoted osteogenic differentiation through transforming growth factor beta 1 (TGF-ß1)/Smad3 in inflammatory environments. We further found the KO of PLAP-1/Asporin inhibited osteoclast differentiation and promoted osteogenic differentiation through the TGF-ß1/Smad signaling pathway in an inflammatory coculture system. The experimental periodontitis model was established by silk ligation and the alveolar bone formation in PLAP-1/Asporin KO mice was promoted through TGF-ß1/Smad3 signaling pathway. The subcutaneous osteogenesis model in nude mice also confirmed that the KO of PLAP-1/Asporin promoted bone formation by the histochemical staining. In conclusion, PLAP-1/Asporin regulated the differentiation of osteoclasts and osteoblasts through TGF-ß1/Smad signaling pathway. The results of this study lay a theoretical foundation for the further study of the pathological mechanism underlying alveolar bone resorption, and the prevention and treatment of periodontitis.


Asunto(s)
Proteínas de la Matriz Extracelular , Osteoblastos , Osteoclastos , Osteogénesis , Periodontitis , Animales , Ratones , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Ratones Noqueados , Ratones Desnudos , Osteoblastos/citología , Osteoclastos/citología , Osteogénesis/genética , Ligamento Periodontal/metabolismo , Periodontitis/genética , Periodontitis/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Células Madre Mesenquimatosas , Porphyromonas gingivalis , Lipopolisacáridos
2.
Int J Nanomedicine ; 18: 5377-5406, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37753067

RESUMEN

The critical challenges in repairing oral soft and hard tissue defects are infection control and the recovery of functions. Compared to conventional tissue regeneration methods, nano-bioactive materials have become the optimal materials with excellent physicochemical properties and biocompatibility. Dental-derived mesenchymal stem cells (DMSCs) are a particular type of mesenchymal stromal cells (MSCs) with great potential in tissue regeneration and differentiation. This paper presents a review of the application of various nano-bioactive materials for the induction of differentiation of DMSCs in oral and maxillofacial restorations in recent years, outlining the characteristics of DMSCs, detailing the biological regulatory effects of various nano-materials on stem cells and summarizing the material-induced differentiation of DMSCs into multiple types of tissue-induced regeneration strategies. Nanomaterials are different and complementary to each other. These studies are helpful for the development of new nanoscientific research technology and the clinical transformation of tissue reconstruction technology and provide a theoretical basis for the application of nanomaterial-modified dental implants. We extensively searched for papers related to tissue engineering bioactive constructs based on MSCs and nanomaterials in the databases of PubMed, Medline, and Google Scholar, using keywords such as "mesenchymal stem cells", "nanotechnology", "biomaterials", "dentistry" and "tissue regeneration". From 2013 to 2023, we selected approximately 150 articles that align with our philosophy.

3.
Front Nutr ; 8: 786742, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096932

RESUMEN

Nutritional risk index (NRI) is an index based on ideal body weight that aims to present body weight and serum albumin levels. It has been utilized to discriminate patients at risk of postoperative complications and predict the postoperative outcome of major surgeries. However, this index remains limited for breast cancer patients treated with neoadjuvant chemotherapy (NACT). The research explores the clinical and prognostic significance of NRI in breast cancer patients. This study included 785 breast cancer patients (477 cases received NACT and 308 cases did not) were enrolled in this retrospective study. The optimal NRI cutoff value was evaluated by receiver operating characteristic (ROC) curve, then reclassified as low NRI group (<112) and high NRI group (≥112). The results demonstrated that NRI independently predicted survival on disease-free survival (DFS) and overall survival (OS) by univariate and multivariate Cox regression survival analyses [P = 0.019, hazard ratio (HR): 1.521, 95% CI: 1.071-2.161 and P = 0.004, HR: 1.415, 95% CI: 1.119-1.789; and P = 0.026, HR:1.500, 95% CI: 1.051-2.143 and P < 0.001, HR: 1.547, 95% CI: 1.221-1.959]. According to the optimal cutoff value of NRI, the high NRI value patients had longer mean DFS and OS time in contrast to those with low NRI value patients (63.47 vs. 40.50 months; 71.50 vs. 56.39 months). Furthermore, the results demonstrated that the high NRI score patients had significantly longer mean DFS and OS time than those with low NRI score patients in early-stage breast cancer (χ2 = 9.0510, P = 0.0026 and χ2 = 9.2140, P = 0.0024) and advanced breast cancer (χ2 = 6.2500, P = 0.0124 and χ2 = 5.8880, P = 0.0152). The mean DFS and OS values in patients with high NRI scores were significantly longer in contrast to those with low NRI scores in different molecular subtypes. The common toxicities after NACT were hematologic and gastrointestinal reactions, and the NRI had no statistically significant effects on toxicities, except in nausea (χ2 = 9.2413, P = 0.0024), mouth ulcers (χ2 = 4.8133, P = 0.0282), anemia (χ2 = 8.5441, P = 0.0140), and leukopenia (χ2 = 11.0951, P = 0.0039). NRI serves as a minimally invasive, easily accessible and convenient prognostic tool for evaluating breast cancer prognoses and treatment efficacy, and may help doctors in terms of selecting measures of greater efficiency or appropriateness to better treat breast cancer.

4.
Lab Chip ; 20(19): 3625-3632, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32901644

RESUMEN

The enzyme-linked immunosorbent assay (ELISA) is one of the most commonly implemented clinical diagnostic tools for the detection and quantification of protein biomarkers. However, conventional ELISA tests require sophisticated infrastructure, expensive reagents, long assay time, and expertise for operation, which are not often easily accessible in resource-limited settings. Microfluidic ELISA-chip based point-of-care (POC) testing allows miniaturization and integration of complex functions that facilitate their usage in limited-resource settings. The current work demonstrates a simple, portable, low cost and equipment-free paper/poly(methyl methacrylate) (PMMA) integrated microfluidic ELISA-chip as a POC device with a visual distance-based readout for quantitative detection of clinical biomarkers. The integrated paper/PMMA ELISA-chip utilizes the movement of immunoassay complexes with magnetic beads by a permanent magnet in a PMMA part of the compartment. The target concentration is translated into a visual distance signal readout for quantitative detection of biomarkers in a µPAD. Because it does not require sophisticated instruments and has the added advantages of low cost, easy operation, and disposability with quantitative visual readout, the paper/PMMA ELISA-chip holds great promise for portable detection of target bioanalytes as a POC diagnostic tool in resource-limited setups.


Asunto(s)
Técnicas Analíticas Microfluídicas , Polimetil Metacrilato , Ensayo de Inmunoadsorción Enzimática , Inmunoglobulina G , Microfluídica , Pruebas en el Punto de Atención
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA