Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 18(19): e2201012, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35403800

RESUMEN

Animal skin is a huge source of inspiration when it comes to multifunctional sensing materials. Bioinspired sensors integrated with the intriguing performance of skin-like steady wide-range strain detection, real-time dynamic visual cues, and self-healing ability hold great promise for next-generation electronic skin materials. Here, inspired by the skins of a chameleon, cellulose nanocrystals (CNCs) liquid crystal skeleton is embedded into polymerizable deep eutectic solvent (PDES) via in situ polymerization to develop a skin-like elastomer. Benefiting from the elastic ionic conductive PDES matrix and dynamic interfacial hydrogen bonding, this strategy has broken through the limitations that CNCs-based cholesteric structure is fragile and its helical pitch is non-adjustable, endowing the resulting elastomer with strain-induced wide-range (0-500%) dynamic structural colors and excellent self-healing ability (78.9-90.7%). Furthermore, the resulting materials exhibit high stretch-ability (1163.7%), strain-sensing and self-adhesive abilities, which make them well-suitable for developing widely applicable and highly reliable flexible sensors. The proposed approach of constructing biomimetic skin-like materials with wide-range dynamic schemochrome is expected to extend new possibilities in diverse applications including anti-counterfeit labels, soft foldable displays, and wearable optical devices.


Asunto(s)
Elastómeros , Dispositivos Electrónicos Vestibles , Animales , Celulosa/química , Disolventes Eutécticos Profundos , Hidrogeles/química , Solventes
2.
ACS Appl Mater Interfaces ; 15(31): 37966-37975, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37503816

RESUMEN

It has been widely accepted that sustainable polymers derived from renewable resources are able to replace the short-turnover petroleum-based materials and reduce environmental impact in the future. However, their hydrophilic chemical structures rich with oxygen groups could lead to easy growth of bacteria, which greatly limit their applications in packaging materials. Here, we present an intelligent food-packaging material with sustained-release antibacterial and real-time monitoring ability based on totally biobased contents. In detail, sodium alginate with Artemisia argyi emission oil (encapsulated in gelatin-Arabic gum microcapsules) and citric acid-sourced pH-responsive carbon quantum dots (CQDs) are coated on bamboo cellulose papers. The obtained biobased composite material (almost 100% biocarbon content) with antibacterial ability is able to extend the shelf life of fresh shrimps and can be biodegraded. Moreover, owing to the introduction of CQDs, the composite can rapidly (within 1 s) detect slight pH variations (response pH ∼5, 10-9 mol/L of OH-) through an obvious color change (hue value from 305 to 355°). The developed strategy may open up new opportunities in the design of multifunctional biobased composites for intelligent applications.


Asunto(s)
Celulosa , Polímeros , Preparaciones de Acción Retardada/farmacología , Polímeros/química , Celulosa/química , Antibacterianos/farmacología , Embalaje de Alimentos
3.
Sci Total Environ ; 831: 154904, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35364163

RESUMEN

Microplastics (MPs) and polychlorinated biphenyls (PCBs) generally coexist in the environment, posing risks to public health and the environment. This study investigated the effect of different MPs on the microbial anaerobic reductive dechlorination of Aroclor 1260, a commercial PCB mixture. MP exposure inhibited microbial reductive dechlorination of PCBs, with inhibition rates of 39.43%, 23.97%, and 17.53% by polyethylene (PE), polypropylene (PP), and polystyrene (PS), respectively. The dechlorination rate decreased from 1.63 µM Cl- d-1 to 0.99-1.34 µM Cl- d-1 after MP amendment. Chlorine removal in the meta-position of PCBs was primarily inhibited by MPs, with no changes in the final PCB dechlorination metabolites. The microbial community compositions in MP biofilms were not significantly different (P > 0.05) from those in suspension culture, although possessing greater Dehalococcoides abundance (0.52-0.81% in MP biofilms; 0.03-0.12% in suspension culture). The co-occurrence network analysis revealed that the presence of MPs attenuated microbial synergistic interactions in the dechlorinating culture systems, which may contribute to the inhibitory effect on microbial PCB dechlorination. These findings are important for comprehensively understanding microbial dechlorination behavior and the environmental fate of PCBs in environments with co-existing PCBs and MPs and for guiding the application of in situ PCB bioremediation.


Asunto(s)
Chloroflexi , Bifenilos Policlorados , Arocloros , Biodegradación Ambiental , Cloro/metabolismo , Chloroflexi/metabolismo , Sedimentos Geológicos , Microplásticos , Plásticos/metabolismo , Bifenilos Policlorados/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA