Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 453, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789944

RESUMEN

BACKGROUND: Impatiens is an important genus with rich species of garden plants, and its distribution is extremely extensive, which is reflected in its diverse ecological environment. However, the specific mechanisms of Impatiens' adaptation to various environments and the mechanism related to lignin remain unclear. RESULTS: Three representative Impatiens species,Impatiens chlorosepala (wet, low degree of lignification), Impatiens uliginosa (aquatic, moderate degree of lignification) and Impatiens rubrostriata (terrestrial, high degree of lignification), were selected and analyzed for their anatomical structures, lignin content and composition, and lignin-related gene expression. There are significant differences in anatomical parameters among the stems of three Impatiens species, and the anatomical structure is consistent with the determination results of lignin content. Furthermore, the thickness of the xylem and cell walls, as well as the ratio of cell wall thickness to stem diameter have a strong correlation with lignin content. The anatomical structure and degree of lignification in Impatiens can be attributed to the plant's growth environment, morphology, and growth rate. Our analysis of lignin-related genes revealed a negative correlation between the MYB4 gene and lignin content. The MYB4 gene may control the lignin synthesis in Impatiens by controlling the structural genes involved in the lignin synthesis pathway, such as HCT, C3H, and COMT. Nonetheless, the regulation pathway differs between species of Impatiens. CONCLUSIONS: This study demonstrated consistency between the stem anatomy of Impatiens and the results obtained from lignin content and composition analyses. It is speculated that MYB4 negatively regulates the lignin synthesis in the stems of three Impatiens species by regulating the expression of structural genes, and its regulation mechanism appears to vary across different Impatiens species. This study analyses the variations among different Impatiens plants in diverse habitats, and can guide further molecular investigations of lignin biosynthesis in Impatiens.


Asunto(s)
Impatiens , Lignina , Tallos de la Planta , Lignina/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/anatomía & histología , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Impatiens/genética , Impatiens/metabolismo , Impatiens/crecimiento & desarrollo , Ecosistema , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Adaptación Fisiológica/genética , Regulación de la Expresión Génica de las Plantas , Especificidad de la Especie , Genes de Plantas , Pared Celular/metabolismo , Pared Celular/genética
2.
Microb Pathog ; 192: 106701, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754566

RESUMEN

Plaque-induced gingivitis is an inflammatory response in gingival tissues resulting from bacterial plaque accumulation at the gingival margin. Postbiotics can promote the proliferation of beneficial bacteria and optimise the state of microbiota in the oral cavity. In this study, we investigated the effect of inactivated Lacticaseibacillus paracasei Probio-01 on plaque-induced gingivitis and the dental plaque microbiota. A total of 32 healthy gingival participants (Group N, using blank toothpaste for 3 months) and 60 patients with plaque-induced gingivitis (30 in Group F, using inactivated Probio-01 toothpaste for 3 months, and 30 in Group B, using blank toothpaste for 3 months, respectively) were recruited. Clinical indices, which included bleeding on probing (BOP), gingival index (GI), and plaque index (PI), were used to assess the severity of gingivitis. Furthermore, 16SrDNA amplicon sequencing was used to explore changes in the gingival state and dental plaque microbiota in patients with plaque-induced gingivitis. The results showed that inactivated Probio-01 significantly reduced clinical indices of gingivitis, including BOP, GI, and PI, in participants with plaque-induced gingivitis and effectively relieved gingival inflammation, compared with that observed in the control group (group B). Inactivated Probio-01 did not significantly influence the diversity of dental plaque microbiota, but increased the relative abundance of dental plaque core bacteria, such as Leptotrichia and Fusobacterium (P < 0.05). Strong correlations were observed between the indices and abundance of dental plaque microbiota. Overall, the inactivated Probio-01 significantly reduced the clinical indices of gingivitis and effectively improved gingival inflammation in patients with plaque-induced gingivitis. The activity of inactivated Probio-01 against plaque-induced gingivitis was possibly mediated by its ability to regulate the dental plaque microbiota, as indicated by the close correlation between the plaque microbiota and clinical indices of gingivitis.


Asunto(s)
Placa Dental , Gingivitis , Microbiota , Pastas de Dientes , Humanos , Gingivitis/microbiología , Placa Dental/microbiología , Femenino , Masculino , Microbiota/efectos de los fármacos , Adulto , Pastas de Dientes/uso terapéutico , Adulto Joven , Índice Periodontal , Probióticos/administración & dosificación , Probióticos/uso terapéutico , ARN Ribosómico 16S/genética , Índice de Placa Dental , Encía/microbiología , Encía/patología , Persona de Mediana Edad
3.
J Clin Periodontol ; 51(4): 474-486, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38164052

RESUMEN

AIM: To investigate the mechanisms by which periodontal ligament cells (PDLCs) convert biomechanical stimulation into inflammatory microenvironment inducing root resorption (RR). MATERIALS AND METHODS: RNA sequencing was employed to explore mechanisms in force-inflammatory signal transduction. Then resorption volume, odontoclastic activity, PDLC pyroptotic ratio and NOD-like receptor protein 3 (NLRP3)-mediated pyroptosis pathway activation were analysed under force and pyroptosis inhibition. Further osteoclast formation, macrophage number and transwell polarization demonstrated the effects of PDLC pyroptosis on osteoclastogenesis and M1 polarization. RESULTS: RNA sequencing revealed that NLRP3-mediated PDLC pyroptosis induced by Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NFκB)/NLRP3 pathway may be involved in mechano-inflammatory signal transduction. PDLC pyroptosis under force and the expression of NLRP3-mediated pyroptosis pathway in force-enhanced PDLCs were significantly increased, both in vivo and in vitro. MCC950 administration was sufficient to reduce PDLC pyroptosis and alleviate RR, odontoclast formation and M1 polarization in vivo. Further in vitro exploration showed that MCC950 treatment reduced PDLC force-promoted pyroptosis and blocked NLRP3-mediated pyroptosis pathway. Moreover, by treating THP-1 with force-pretreated PDLCs or supernatants, NLRP3-mediated PDLC pyroptotic released products induced osteoclast formation and M1 polarization. CONCLUSIONS: NLRP3-mediated PDLC pyroptosis promotes RR. PDLCs transmit excessive force into inflammation signals through TLR4/NFκB/NLRP3 pathway, inducing PDLC pyroptosis, which directly promotes odontoclast formation and subsequent RR or promotes M1 polarization to indirectly trigger odontoclastogenesis and RR.


Asunto(s)
Proteínas NLR , Resorción Radicular , Humanos , Proteínas NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptor Toll-Like 4/metabolismo , Ligamento Periodontal , Piroptosis , Resorción Radicular/metabolismo
4.
Ecotoxicol Environ Saf ; 274: 116207, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492484

RESUMEN

Plastic pollution is a common concern of global environmental pollution. Polystyrene (PS) and polyethylene (PE) account for almost one-third of global plastic production. However, so far, there have been few reports on microbial strains capable of simultaneously degrading PS and PE. In this study, Microbacterium esteraromaticum SW3, a non-pathogenic microorganism that can use PS or PE as the only carbon source in the mineral salt medium (MM), was isolated from plastics-contaminated soil and identified. The optimal growth conditions for SW3 in MM were 2% (w/v) PS or 2% (w/v) PE, 35°C and pH 6.3. A large number of bacteria and obvious damaged areas were observed on the surface of PS and PE products after inoculated with SW3 for 21 d. The degradation rates of PS and PE by SW3 (21d) were 13.17% and 5.39%, respectively. Manganese peroxidase and lipase were involved in PS and PE degradation by SW3. Through Fourier infrared spectroscopy detection, different functional groups such as carbonyl, hydroxyl and amidogen groups were produced during the degradation of PS and PE by SW3. Moreover, PS and PE were degraded into alkanes, ketones, carboxylic acids, esters and so on detected by GC-MS. Collectively, we have isolated and identified SW3, which can use PS or PE as the only carbon source in MM as well as degrade PS and PE products. This study not only provides a competitive candidate strain with broad biodegradability for the biodegradation of PS and/or PE pollution, but also provides new insights for the study of plastic biodegradation pathways.


Asunto(s)
Actinomycetales , Poliestirenos , Poliestirenos/metabolismo , Polietileno/metabolismo , Suelo , Actinomycetales/metabolismo , Biodegradación Ambiental , Carbono , Plásticos/metabolismo , Microbacterium
5.
Apoptosis ; 28(3-4): 293-312, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36645574

RESUMEN

Pyroptosis could be responsible for the bone loss from bone metabolic diseases, leading to the negative impact on people's health and life. It has been shown that osteoclasts, osteoblasts, macrophages, chondrocytes, periodontal and gingival cells may be involved in bone loss linked with pyroptosis. So far, the involved mechanisms have not been fully elucidated. In this review, we introduced the related cells involved in the pyroptosis associated with bone loss and summarized the role of these cells in the bone metabolism during the process of pyroptosis. We also discuss the clinical potential of targeting mechanisms in the osteoclasts, osteoblasts, macrophages, chondrocytes, periodontal and gingival cells touched upon pyroptosis to treat bone loss from bone metabolic diseases as well as the challenges of avoiding potential side effects and producing efficient treatment methods.


Asunto(s)
Enfermedades Metabólicas , Piroptosis , Humanos , Piroptosis/genética , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Apoptosis
6.
Int Endod J ; 56(5): 608-621, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36648366

RESUMEN

INTRODUCTION: Microbial function changes may be responsible for dental pulp transformation from normal to diseased. However, studies on the prediction and verification of the function of the microbial community in the deep dentine and pulp of caries-induced pulpitis are lacking. METHODS: This study included 171 cases of deep dentinal caries divided into normal pulp (NP), reversible pulpitis (RP), and irreversible pulpitis (IRP). In Experiment I, the microbial community composition was identified in 111 samples using 16S ribosomal DNA. Function prediction was performed through phylogenetic investigation of communities by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States prediction and qPCR. In Experiment II, different microbiome functions were confirmed in 60 samples using liquid chromatography-tandem mass spectrometry. RESULTS: In Experiment I, microbial abundance significantly differed in the IRP group compared to the other two groups. The RP and NP groups had the same microbiome composition, but the predicted functional difference between the RP and NP groups pertained to membrane transport (p < .010). The predicted functional difference between the IRP and NP groups pertained to amino-acid, co-factor, and vitamin metabolism (p < .010). In Experiment II, Kyoto Encyclopedia of Genes and Genomes functional annotation revealed that the differential metabolites between the RP and NP groups did not participate in membrane transport; however, the differential metabolites between the IRP and NP groups participated in amino-acid metabolism. CONCLUSIONS: The near-pulp microbiome in RP and NP with deep dentinal caries had the same differential function. However, amino acid metabolism in near the pulp microbial community differed between IRP and NP with deep dentinal caries.


Asunto(s)
Caries Dental , Microbiota , Pulpitis , Humanos , Susceptibilidad a Caries Dentarias , Filogenia , Pulpa Dental
7.
Soft Matter ; 18(48): 9231-9241, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36427226

RESUMEN

Gait abnormalities have been widely investigated in the diagnosis and treatment of neurodegenerative diseases. However, it is still a great challenge to achieve a comfortable, convenient, sensitive and high-pressure resistant flexible gait detection sensor for real-time health monitoring. In this work, a polyaniline (PANI)@(polyacrylic acid (PAA)-polyvinyl alcohol (PVA)) (PANI@(PVA-PAA)) ternary network hydrogel with a uniaxially oriented porous featured structure was successfully prepared using a simple freeze-thaw method and in situ polymerization. The PANI@(PVA-PAA) hydrogel shows excellent compressive mechanical properties (423.44 kPa), favorable conductivity (2.02 S m-1) and remarkable durability (500 loading-unloading cycle), and can sensitively detect the effect of pressure with a fast response time (200 ms). The PANI@(PVA-PAA) hydrogel assembled into a flexible sensor can effectively identify the movement state of the shoulder, knee and even the sole of the plantar for gait detection. The uniaxially oriented porous structure enables the hydrogel-based sensor to have a high rate of change in the longitudinal direction and can effectively distinguish various gaits. The construction of a hydrogen bond between PANI and the PVA-PAA hydrogel ensures the uniform distribution of PANI in the hydrogel to form a ternary network structure, which improves the pressure resistance and conductivity of the PANI@(PVA-PAA) hydrogel. Thus, PANI@(PVA-PAA) hydrogel flexible sensor for gait detection can not only effectively monitor some serious diseases but also detect some unscientific exercise in people's daily life.


Asunto(s)
Hidrogeles , Alcohol Polivinílico , Humanos , Hidrogeles/química , Porosidad , Alcohol Polivinílico/química , Marcha
8.
Mikrochim Acta ; 189(4): 138, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35262833

RESUMEN

On-line monitoring of the dopamine (DA)-based molecular imprinting processes over Fe3O4@SiO2-NH2 nanoparticles (SiMNPs) is reported by using a real-time quantitative PCR machine. Taking advantages of the efficient fluorescence quenching capability of polydopamine (PDA) and its high binding affinity to rhodamine B (RhB), we performed molecular imprinting against different proteins with free dopamine as the functional monomer and RhB as a fluorescent indicator. Along with the template molecules, the fluorescent indicators were continuously encapsulated into the PDA layer formed on the surface of the SiMNPs, resulting in immediate quenching of the fluorescence, which can be conveniently monitored in real time. As proteins showed sequence-dependent influences on the oxidation of dopamine and subsequent self-assembly on the surface of the SiMNPs, the observed fluorescence signals clearly indicated the polymerization progress in the presence of the template proteins, allowing precise control of the reaction time for different templates at a given initial concentration. The optimum end point of the reaction was found to be when 90 ± 3% of the templates had been encapsulated into the polymer, which offered the highest imprinting factor and selectivity. We applied the approach to prepare a primary PDA-based surface imprinted polymer for a multifunctional protein apurinic/apyrimidinic endonuclease/redox effector factor 1 (APE1). After further introduction of 3-hydroxyphenylboronic acid to the interfaces between APE1 and PDA, the resultant molecularly imprinted polymers (MIP-II) enabled quantitative isolation APE1 from cell lysate samples. The developed approach will be useful for the quantitative preparation of PDA-based MIPs for precious template proteins with limited input quantity. It is also applicable for further study on the effects of different proteins or peptides on the PDA formation reactions.


Asunto(s)
Impresión Molecular , Dopamina/química , Impresión Molecular/métodos , Polimerizacion , Polímeros/química , Proteínas , Dióxido de Silicio/química
9.
Am J Orthod Dentofacial Orthop ; 162(4): e159-e168, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36058797

RESUMEN

INTRODUCTION: This study aimed to investigate the role of wingless-type MMTV integration site family member 5a (Wnt5a)-receptor tyrosine kinase-like orphan receptor 2 (Ror2) signaling in root resorption. METHODS: The messenger RNA (mRNA) expression of Wnt5a, Ror2, and RANKL in periodontal ligament cells (PDLCs) under compression force (CF) with or without Ror2 small interfering RNA (siRNA) were measured by quantitative reverse transcription-polymerase chain reaction, and these proteins released into culture supernatants were measured using enzyme-linked immunosorbent assay. Then these PDLC-conditioned media under CF with or without Ror2 siRNA were used to culture osteoclast precursors to detect osteoclastogenesis effects via tartrate-resistant acid phosphatase staining. In in vivo studies, the odontoclast number and the root resorption volume under excessive CF with or without Ror2 siRNA were investigated by tartrate-resistant acid phosphatase immunohistochemical staining and microcomputed tomography. The protein levels for Wnt5a, Ror2, and receptor activator of nuclear factor-kappa B ligand (RANKL) in the periodontal ligament tissues were also detected using immunohistochemical staining. Finally, the odontoclast number, root resorption volume, and the mRNA and protein expressions were compared between immature and mature teeth. RESULTS: The mRNA production and protein release level of Wnt5a, Ror2, and RANKL increased after CF, whereas they were significantly downregulated with Ror2 siRNA. The osteoclast number increased treating with culture medium from PDLC applying CF, but the increase was inhibited after adding Ror2 siRNA. In the animal model, the odontoclast number and root resorption volume significantly increased in the CF group but decreased in the CF with the Ror2 siRNA group. The protein levels of Wnt5a, Ror2, and RANKL in periodontal ligament were upregulated under excessive CF, and the pathway was inhibited with Ror2 siRNA. In the immature tooth group, the odontoclast number, root resorption volume, and the mRNA and protein expressions of Wnt5a-Ror2 signaling were reduced. CONCLUSIONS: Wnt5a-Ror2 signaling in PDLCs enhanced by excessive CF could promote RANKL release and induce precursor differentiation, partly leading to increased odontoclast activity and ultimate root resorption. The less resorption of the immature tooth may be due to odontoclastogenesis inhibition by decreased expression of Wnt5a-Ror2 signaling.


Asunto(s)
Ligando RANK , Resorción Radicular , Animales , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Osteoclastos , Ligando RANK/metabolismo , ARN Mensajero , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/farmacología , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/farmacología , Fosfatasa Ácida Tartratorresistente/metabolismo , Microtomografía por Rayos X
10.
J Periodontal Res ; 56(5): 848-862, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34296758

RESUMEN

Periodontitis is a major burden of public health, affecting 20%-50% of the global population. It is a complex inflammatory disease characterized by the destruction of supporting structures of the teeth, leading to tooth loss and the emergence or worsening of systematic diseases. Understanding the molecular mechanisms underlying the physiopathology of periodontitis is beneficial for targeted therapeutics. Long non-coding RNAs (lncRNAs), transcripts made up of more than 200 nucleotides, have emerged as novel regulators of many biological and pathological processes. Recently, an increasing number of dysregulated lncRNAs have been found to be implicated in periodontitis. In this review, an overview of lncRNAs, including their biogenesis, characteristics, function mechanisms and research approaches, is provided. And we summarize recent research reports on the emerging roles of lncRNAs in regulating proliferation, apoptosis, inflammatory responses, and osteogenesis of periodontal cells to elucidate lncRNAs related physiopathology of periodontitis. Furthermore, we have highlighted the underlying mechanisms of lncRNAs in periodontitis pathology by interacting with microRNAs. Finally, the potential clinical applications, current challenges, and prospects of lncRNAs as diagnostic and prognostic biomarkers and therapeutic targets for periodontitis disease are discussed.


Asunto(s)
MicroARNs , Periodontitis , ARN Largo no Codificante , Apoptosis/genética , Humanos , MicroARNs/genética , Periodontitis/genética , ARN Largo no Codificante/genética
11.
Am J Orthod Dentofacial Orthop ; 159(4): 426-434.e5, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33568273

RESUMEN

INTRODUCTION: This study aimed to build an experimental immature tooth movement model and verify less resorption of incompletely developed roots than those fully developed during the same orthodontic treatment, followed by investigating the cellular and molecular mechanism. METHODS: The development of Wistar rat tooth was investigated using in vivo microcomputed tomography and hematoxylin and eosin staining to decide the optimal ages of rats for immature tooth and mature tooth groups. The rats in the immature tooth and mature tooth groups were divided into experimental, sham control, and blank control groups. After orthodontic treatment for 3 weeks, the mesial root volume, crown movement distance, neck movement distance, root inclination, and apical distance were measured by microcomputed tomography. The expressions of TRAP, Jagged1, Notch2, IL-6, and RANKL were analyzed by immunohistochemical staining and real-time polymerase chain reaction. The repair of root resorption was also investigated after removing orthodontic force for 3 and 6 weeks. RESULTS: The root achieved the development stage around 10 weeks, so 4-week-old rats and 10-week-old rats were used in the immature tooth group and mature tooth group, respectively. The volume of root resorption in the experimental immature tooth group was 0.0869 ± 0.0244 mm3, which was less than that in the mature tooth group (0.1218 ± 0.0123 mm3) (P <0.001). Immature tooth movement decreased TRAP-positive odontoclasts on the compression side while having no statistically significant effect on osteoclasts. The protein expression of Jagged1, Notch2, IL-6, and RANKL in the mature tooth group increased significantly compared with the immature tooth group, not only on the compression side but also on the tension sides. The mRNA expression of Jagged1, Notch2, and RANKL was significantly lower in the immature tooth group, whereas the expression of IL-6 had no significance but a strong tendency. The root volume after repairing for 3 weeks was still less than that of blank control, whereas after repairing for 6 weeks, the difference was not statistically significant. CONCLUSIONS: The experimental immature tooth movement model for the Wistar rat was achieved for the first time. The immature tooth will suffer less root resorption than the mature tooth, which may be due to odontoclastogenesis inhibition by decreased expression of Jagged1/Notch2/IL-6/RANKL signaling.


Asunto(s)
Resorción Radicular , Animales , Osteoclastos , Ratas , Ratas Wistar , Resorción Radicular/etiología , Resorción Radicular/prevención & control , Técnicas de Movimiento Dental , Raíz del Diente , Microtomografía por Rayos X
12.
Chembiochem ; 21(6): 801-806, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-31593360

RESUMEN

A novel strategy was developed for microRNA detection based on the fluorescence quenching of polydopamine (PDA)-coated reduced graphene oxide (RGO) nanosheets (RGO@PDA). Compared with graphene oxide (GO), the reduction of GO and modification of the surface of RGO by PDA not only improve the stability, dispersity, biocompatibility, and cellular uptake without degeneration of the unique electronic properties of graphene, but also add an electron gate for harvesting electrons, as well as enabling efficient and forward electron transfer to avoid unwanted electron transfer and realize highly sensitive miRNA detection; thus a lower detection limit can be achieved in this sensing system. Remarkably, nanoprobes consisting of RGO@PDA and fluorescein-labeled single-stranded DNA can naturally enter cancer cells without the aid of transfection agents, as well as resisting enzymatic lysis and showing almost no effect on the cell viability. More importantly, intense and time-dependent fluorescence responses were observed from the important tumor marker microRNA-21 (miR-21) in living cells; thus suggesting that the proposed sensing platform shows great promise for applications in disease diagnosis and fundamental research into biochemistry.


Asunto(s)
Materiales Biomiméticos/química , Electrones , Fluorescencia , Grafito/química , Indoles/química , MicroARNs/análisis , Polímeros/química , Células HeLa , Humanos , Imagen Óptica , Tamaño de la Partícula
13.
J Sep Sci ; 43(11): 2133-2141, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32100419

RESUMEN

Molecularly imprinted polymers for strobilurin fungicides were prepared by precipitation polymerization employing azoxystrobin as template molecular together with methacrylic acid monomer and trimethylolpropane triacrylate cross-linker. Morphological characterization showed molecularly imprinted polymers were uniform spherical particles with about 0.2 µm in diameter, while the morphologies of nonimprinted polymers were irregular bulk. The equilibrium binding and selective experiments proved that molecularly imprinted polymers possessed a higher affinity toward four fungicides compared to nonimprinted polymers and heterogeneous binding sites were found in the molecularly imprinted polymers. Molecularly imprinted solid-phase extraction conditions, including sample loading solvents, selective washing, and elution solvents, were carefully optimized. The developed method showed good recoveries (70.0-114.0%) with relative standard deviations in range of 1.0-9.8% (n  = â€¯3) for samples (cucumber and peach) spiked at three different levels (10, 50, and 100 µg/ kg). The detection limit (signal/noise = 3) ranged from 0.01 to 0.08 µg/kg. The results demonstrated good potential use of this convenient and highly efficient method for determining trace strobilurin fungicides in agricultural products.


Asunto(s)
Productos Agrícolas/química , Fungicidas Industriales/análisis , Polímeros Impresos Molecularmente/síntesis química , Estrobilurinas/análisis , Adsorción , Estructura Molecular , Polímeros Impresos Molecularmente/química , Tamaño de la Partícula , Propiedades de Superficie
14.
Am J Orthod Dentofacial Orthop ; 157(5): 602-610, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32354433

RESUMEN

INTRODUCTION: The aim of this study was to verify less resorption of incompletely developed roots compared with those that were fully developed during the same orthodontic treatment and to test the value of the amount of external apical root resorption for predicting tooth development. METHODS: A sample of 524 patients aged 10-15 years was selected following the inclusion criteria. For each subject, pretreatment and posttreatment digital panoramic and lateral radiographs were collected, and tooth development was determined from each radiograph. Through calculations, the amount of root resorption was assessed by a created and scientific approach for large-scale application using radiographs with only 8 measurement indexes for each patient. Other basic information and treatment parameters regarded as possible risk factors were also collected from standardized recordings or radiographs. The root length between the groups or in the single group were compared with t tests and correlation analyses. Linear univariate and multivariate regression analyses were used to test identify predictors for root resorption and to develop a prediction model. RESULTS: There was a statistically significant difference in the amount of root resorption with tooth development before correction (P <0.001) as well as after correction (P = 0.002). There was a statistically significant correlation (P <0.001) but no difference between pretreatment and posttreatment root length in the immature tooth group because of less root resorption. In the multivariate analyses, tooth development (P <0.001), treatment duration, apex horizontal movements, apex vertical movements, and previous orthodontic treatment were included in the final model as risk factors, and tooth development had the highest beta value. CONCLUSIONS: There is an association between root resorption and tooth development, and tooth development is an important predictor of root resorption. Patients with immature teeth are at a much lower risk of apical root resorption.


Asunto(s)
Resorción Radicular , Adolescente , Niño , Diente Canino , Humanos , Incisivo , Ápice del Diente , Técnicas de Movimiento Dental , Raíz del Diente
16.
J Hazard Mater ; 466: 133655, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38310843

RESUMEN

The extensive use of plastics has given rise to microplastics, a novel environmental contaminant that has sparked considerable ecological and environmental concerns. Biodegradation offers a more environmentally friendly approach to eliminating microplastics, but their degradation by marine microbial communities has received little attention. In this study, we used iron-enhanced marine sediment to augment the natural bacterial community and facilitate the decomposition of polyethylene (PE) microplastics. The introduction of iron-enhanced sediment engendered an augmented bacterial biofilm formation on the surface of polyethylene (PE), thereby leading to a more pronounced degradation effect. This novel observation has been ascribed to the oxidative stress-induced generation of a variety of oxygenated functional groups, including hydroxyl (-OH), carbonyl (-CO), and ether (-C-O) moieties, within the microplastic substrate. The analysis of succession in the community structure of sediment bacteria during the degradation phase disclosed that Acinetobacter and Pseudomonas emerged as the principal bacterial players in PE degradation. These taxa were directly implicated in oxidative metabolic pathways facilitated by diverse oxidase enzymes under iron-facilitated conditions. The present study highlights bacterial community succession as a new pivotal factor influencing the complex biodegradation dynamics of polyethylene (PE) microplastics. This investigation also reveals, for the first time, a unique degradation pathway for PE microplastics orchestrated by the multifaceted marine sediment microbiota. These novel insights shed light on the unique functional capabilities and internal biochemical mechanisms employed by the marine sediment microbiota in effectively degrading polyethylene microplastics.


Asunto(s)
Microbiota , Contaminantes Químicos del Agua , Microplásticos/farmacología , Plásticos/análisis , Polietileno/farmacología , Hierro/análisis , Contaminantes Químicos del Agua/análisis , Bacterias , Sedimentos Geológicos/microbiología , Redes y Vías Metabólicas
17.
Int Immunopharmacol ; 133: 112151, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38685175

RESUMEN

Osteoclasts are pivotal in regulating bone metabolism, with immune cells significantly influencing both physiological and pathological processes by modulating osteoclast functions. This is particularly evident in conditions of inflammatory bone resorption, such as rheumatoid arthritis and periodontitis. This review summarizes and comprehensively analyzes the research progress on the regulation of osteoclast formation by immune cells, aiming to unveil the underlying mechanisms and pathways through which diseases, such as rheumatoid arthritis and periodontitis, impact bone metabolism.


Asunto(s)
Artritis Reumatoide , Resorción Ósea , Huesos , Osteoclastos , Periodontitis , Humanos , Osteoclastos/inmunología , Osteoclastos/metabolismo , Animales , Huesos/metabolismo , Huesos/inmunología , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Periodontitis/inmunología , Periodontitis/metabolismo , Resorción Ósea/inmunología , Osteogénesis/inmunología
18.
Int J Biol Macromol ; 264(Pt 2): 130670, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453108

RESUMEN

Liquid free ion-conductive elastomers (ICEs) have demonstrated promising potential in various advanced application scenarios including sensor, artificial skin, and human-machine interface. However, ICEs that synchronously possess toughness, adhesiveness, stability, and anti-bacterial capability are still difficult to achieve yet highly demanded. Here, a one-pot green and sustainable strategy was proposed to fabricate multifunctional ICEs by extracting non-cellulose components (mainly lignin and hemicellulose) from lignocellulose with polymerizable deep eutectic solvents (PDES) and the subsequent in-situ photo-polymerization process. Ascribing to the uniform dispersion of non-cellulose components in PDES, the resultant ICEs demonstrated promising mechanical strength (a tensile strength of ~1200 kPa), high toughness (~9.1 MJ m-3), favorable adhesion (a lap-shear strength up to ~61.5 kPa toward metal), conducive stabilities, and anti-bacterial capabilities. With the help of such advantages, the ICEs exhibited sensitive (a gauge factor of ~23.5) and stable (~4000 cycles) performances in human motion and physiological signal detection even under sub-zero temperatures (e.g., -20 °C). Besides, the residue cellulose can be mechanically isolated into nanoscale fibers, which matched the idea of green chemistry.


Asunto(s)
Disolventes Eutécticos Profundos , Dietilestilbestrol/análogos & derivados , Lignina , Humanos , Celulosa , Elastómeros
19.
Biomed Mater ; 19(6)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39208842

RESUMEN

Medical dressings with multifunctional properties, including potent regeneration capability and good biocompatibility, are increasingly needed in clinical practice. In this study, we reported a novel hybrid wound dressing (PCL/SerMA/DMOG) that combines electrospun PCL membranes with DMOG-loaded methacrylated sericin (SerMA) hydrogel. In such a design, DMOG molecules are released from the hybrid dressing in a sustained mannerin vitro. A series ofin vitroassays demonstrated that DMOG-loaded hybrid dressing has multiple biological functions, including promotion of human umbilical vein endothelial cells proliferation and migration,in vitrovascularization, and the generation of intracellular NO. When applied to the cutaneous wound, the PCL/SerMA/DMOG dressing significantly accelerated wound closure and tissue regeneration by promoting angiogenesis in the wound area, collagen deposition, and cell proliferation within the wound bed. These results highlight the potential clinical application of PCL/SerMA/DMOG hybrid dressings as promising alternatives for accelerating wound healing via improved biocompatibility and angiogenesis amelioration.


Asunto(s)
Vendajes , Materiales Biocompatibles , Proliferación Celular , Células Endoteliales de la Vena Umbilical Humana , Poliésteres , Sericinas , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Humanos , Poliésteres/química , Proliferación Celular/efectos de los fármacos , Animales , Sericinas/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Piel/lesiones , Piel/metabolismo , Hidrogeles/química , Neovascularización Fisiológica/efectos de los fármacos , Masculino , Movimiento Celular/efectos de los fármacos , Ratones , Ratas , Ratas Sprague-Dawley , Metacrilatos/química , Ensayo de Materiales
20.
Adv Healthc Mater ; 13(13): e2304125, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38301194

RESUMEN

Disturbance in the mitochondrial electron transport chain (ETC) is a key factor in the emerging discovery of immune cell activation in inflammatory diseases, yet specific regulation of ETC homeostasis is extremely challenging. In this paper, a mitochondrial complex biomimetic nanozyme (MCBN), which plays the role of an artificial "VI" complex and acts as an electron and free radical conversion factory to regulate ETC homeostasis is creatively developed. MCBN is composed of bovine serum albumin (BSA), polyethylene glycol (PEG), and triphenylphosphine (TPP) hierarchically encapsulating MnO2 polycrystalline particles. It has nanoscale size and biological properties like natural complexes. In vivo and in vitro experiments confirm that MCBN can target the mitochondrial complexes of inflammatory macrophages, absorb excess electrons in ETC, and convert the electrons to decompose H2O2. By reducing the ROS and ATP bursts and converting existing free radicals, inhibiting NLRP3 inflammatory vesicle activation and NF-κB signaling pathway, MCBN effectively suppresses macrophage M1 activation and inflammatory factor secretion. It also demonstrates good inflammation control and significantly alleviates alveolar bone loss in a mouse model of ligation-induced periodontitis. This is the first nanozyme that mimics the mitochondrial complex and regulates ETC, demonstrating the potential application of MCBN in immune diseases.


Asunto(s)
Macrófagos , Mitocondrias , Animales , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Células RAW 264.7 , Inflamación/metabolismo , Inflamación/patología , Radicales Libres/química , Radicales Libres/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Albúmina Sérica Bovina/química , Polietilenglicoles/química , Manganeso/química , Electrones , Óxidos/química , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , Ratones Endogámicos C57BL , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA