Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 487
Filtrar
Más filtros

Intervalo de año de publicación
1.
PLoS Pathog ; 19(6): e1011420, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37262073

RESUMEN

Enterovirus A71 (EV-A71) infection is a major cause of severe hand, foot and mouth disease (HFMD) in young children. The characteristics of EV-A71 neutralizing antibodies in HFMD patients are not well understood. In this study, we identified and cloned EV-A71-neutralizing antibodies by single cell RNA and B cell receptor sequencing of peripheral blood mononuclear cells. From 145 plasmablasts, we identified two IgG1 monoclonal antibodies (mAbs) and six IgM mAbs that neutralized EV-A71. Four of the IgM mAbs harbor germline variable sequences and neutralize EV-A71 potently. Two genetically similar IgM antibodies from two patients have recurrent heavy chain variable domain gene usage and similar complementarity-determining region 3 sequences. We mapped the residues of EV-A71 critical for neutralization through selection of virus variants resistant to antibody neutralization in the presence of neutralizing mAbs. The residues critical for neutralization are conserved among EV-A71 genotypes. Epitopes for the two genetically similar antibodies overlap with the SCARB2 binding site of EV-A71. We used escape variants to measure the epitope-specific antibody response in acute phase serum samples from EV-A71 infected HFMD patients. We found that these epitopes are immunogenic and contributed to the neutralizing antibody response against the virus. Our findings advance understanding of antibody response to EV-A71 infection in young children and have translational potential: the IgM mAbs could potentially be used for prevention or treatment of EV-A71 infections.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Niño , Humanos , Preescolar , Enterovirus/genética , Enterovirus Humano A/genética , Leucocitos Mononucleares , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , Inmunoglobulina M , Anticuerpos Monoclonales , Antígenos Virales/genética
2.
Nano Lett ; 24(8): 2619-2628, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38350110

RESUMEN

Post-extraction alveolar bone atrophy greatly hinders the subsequent orthodontic tooth movement (OTM) or implant placement. In this study, we synthesized biodegradable bifunctional bioactive calcium phosphorus nanoflowers (NFs) loaded with abaloparatide (ABL), namely ABL@NFs, to achieve spatiotemporal management for alveolar bone regeneration. The NFs exhibited a porous hierarchical structure, high drug encapsulation efficacy, and desirable biocompatibility. ABL was initially released to recruit stem cells, followed by sustained release of Ca2+ and PO43- for in situ interface mineralization, establishing an osteogenic "biomineralized environment". ABL@NFs successfully restored morphologically and functionally active alveolar bone without affecting OTM. In conclusion, the ABL@NFs demonstrated promising outcomes for bone regeneration under orthodontic condition, which might provide a desirable reference of man-made "bone powder" in the hard tissue regeneration field.


Asunto(s)
Regeneración Ósea , Osteogénesis , Proteína Relacionada con la Hormona Paratiroidea , Humanos , Huesos , Porosidad
3.
Wound Repair Regen ; 32(3): 279-291, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38353052

RESUMEN

Pressure ulcer (PU) is a worldwide problem that is difficult to address because of the related inflammatory response, local hypoxia, and repeated ischaemia/reperfusion, causing great suffering and financial burden to patients. Traditional Chinese medicine turtle plate powder can treat skin trauma, but its composition is complex and inconvenient to use. Here, we combined cholesterol myristate (S8) with berberine (BBR), with anti-inflammatory and antibacterial effects, as a drug and used hydroxypropyl methylcellulose and polyvinylpyrrolidone K30 as carriers to construct a novel film-forming polymeric solution (S8 + BBR FFPS), comprehensively study its reparative effect on PU and explore the potential mechanism in rat PU models. The results showed that S8 + BBR FFPS inhibits excessive inflammatory response, promotes re-epithelialization, and promotes hair follicle growth during the healing process of PU, which may be related to the activation of the Wnt/ß-catenin signalling pathway by S8 + BBR FFPS to mediate hair follicle stem cell proliferation and maintain skin homeostasis. Therefore, S8 + BBR FFPS may be a potential candidate for the treatment of chronic skin injury, and its association with the Wnt/ß-catenin signalling pathway may provide new ideas to guide the design of biomaterial-based wound dressings for chronic wound repair.


Asunto(s)
Berberina , Modelos Animales de Enfermedad , Úlcera por Presión , Ratas Sprague-Dawley , Vía de Señalización Wnt , Cicatrización de Heridas , Animales , Úlcera por Presión/tratamiento farmacológico , Berberina/farmacología , Berberina/uso terapéutico , Ratas , Cicatrización de Heridas/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Masculino , Polímeros/farmacología , Proliferación Celular/efectos de los fármacos
4.
Environ Sci Technol ; 58(21): 9350-9360, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38743617

RESUMEN

The practicality of intensifying organic matter capture for bioenergy recovery to achieve energy-neutral municipal wastewater treatment is hindered by the lack of sustainable methods. This study developed innovative processes integrating iron recycle-driven organic capture with a sidestream anaerobic membrane bioreactor (AnMBR). Iron-assisted chemically enhanced primary treatment achieved elemental redirection with 75.2% of chemical oxygen demand (COD), 20.2% of nitrogen, and 97.4% of phosphorus captured into the sidestream process as iron-enhanced primary sludge (Fe-PS). A stable and efficient biomethanation of Fe-PS was obtained in AnMBR with a high methane yield of 224 mL/g COD. Consequently, 64.1% of the COD in Fe-PS and 48.2% of the COD in municipal wastewater were converted into bioenergy. The acidification of anaerobically digested sludge at pH = 2 achieved a high iron release efficiency of 96.1% and a sludge reduction of 29.3% in total suspended solids. Ultimately, 87.4% of iron was recycled for coagulant reuse, resulting in a theoretical 70% reduction in chemical costs. The novel system evaluation exhibited a 75.2% improvement in bioenergy recovery and an 83.3% enhancement in net energy compared to the conventional system (primary sedimentation and anaerobic digestion). This self-reliant and novel process can be applied in municipal wastewater treatment to advance energy neutrality at a lower cost.


Asunto(s)
Reactores Biológicos , Hierro , Aguas Residuales , Aguas Residuales/química , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Aguas del Alcantarillado/química , Análisis de la Demanda Biológica de Oxígeno , Metano , Biocombustibles , Fósforo , Membranas Artificiales
5.
Environ Sci Technol ; 58(32): 14158-14168, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39088650

RESUMEN

The widespread use of plastic products in daily life has raised concerns about the health hazards associated with nanoplastics (NPs). When exposed, NPs are likely to infiltrate the bloodstream, interact with plasma proteins, and trigger macrophage recognition and clearance. In this study, we focused on establishing a correlation between the unique protein coronal signatures of high-density (HDPE) and low-density (LDPE) polyethylene (PE) NPs with their ultimate impact on macrophage recognition and cytotoxicity. We observed that low-density and high-density lipoprotein receptors (LDLR and SR-B1), facilitated by apolipoproteins, played an essential role in PE-NP recognition. Consequently, PE-NPs activated the caspase-3/GSDME pathway and ultimately led to pyroptosis. Advanced imaging techniques, including label-free scattered light confocal imaging and cryo-soft X-ray transmission microscopy with 3D-tomographic reconstruction (nano-CT), provided powerful insights into visualizing NPs-cell interactions. These findings underscore the potential risks of NPs to macrophages and introduce analytical methods for studying the behavior of NPs in biological systems.


Asunto(s)
Macrófagos , Polietileno , Corona de Proteínas , Macrófagos/metabolismo , Corona de Proteínas/metabolismo , Corona de Proteínas/química , Animales , Ratones , Nanopartículas/química , Humanos
6.
J Immunol ; 209(2): 280-287, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35777850

RESUMEN

Hand, foot, and mouth disease (HFMD), which is mainly caused by coxsackievirus A16 (CVA16) or enterovirus A71 (EV-A71), poses a serious threat to children's health. However, the long-term dynamics of the neutralizing Ab (NAb) response and ideal paired-serum sampling time for serological diagnosis of CVA16-infected HFMD patients were unclear. In this study, 336 CVA16 and 253 EV-A71 PCR-positive HFMD inpatients were enrolled and provided 452 and 495 sera, respectively, for NAb detection. Random-intercept modeling with B-spline was conducted to characterize NAb response kinetics. The NAb titer of CVA16 infection patients was estimated to increase from negative (2.1, 95% confidence interval [CI]: 1.4-3.3) on the day of onset to a peak of 304.8 (95% CI: 233.4-398.3) on day 21 and then remained >64 until 26 mo after onset. However, the NAb response level of EV-A71-infected HFMD patients was much higher than that of CVA16-infected HFMD patients throughout. The geometric mean titer was significantly higher in severe EV-A71-infected patients than in mild patients, with a 2.0-fold (95% CI: 1.4-3.2) increase. When a 4-fold rise in titer was used as the criterion for serological diagnosis of CVA16 and EV-A71 infection, acute-phase serum needs to be collected at 0-5 d, and the corresponding convalescent serum should be respectively collected at 17.4 (95% CI: 9.6-27.4) and 24.4 d (95% CI: 15.3-38.3) after onset, respectively. In conclusion, both CVA16 and EV-A71 infection induce a persistent humoral immune response but have different NAb response levels and paired-serum sampling times for serological diagnosis. Clinical severity can affect the anti-EV-A71 NAb response.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Anticuerpos Neutralizantes , Niño , China/epidemiología , Estudios de Cohortes , Enfermedad de Boca, Mano y Pie/diagnóstico , Humanos , Lactante , Estudios Longitudinales
7.
Ecotoxicol Environ Saf ; 271: 115979, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38244511

RESUMEN

Micro/nanoplastics (M/NPs) in water have raised global concern due to their potential environmental risks. To reestablish a M/NPs free world, enormous attempts have been made toward employing chemical technologies for their removal in water. This review comprehensively summarizes the advances in chemical degradation approaches for M/NPs elimination. It details and discusses promising techniques, including photo-based technologies, Fenton-based reaction, electrochemical oxidation, and novel micro/nanomotors approaches. Subsequently, critical influence factors, such as properties of M/NPs and operating factors, are analyzed in this review specifically. Finally, it concludes by addressing the current challenges and future perspectives in chemical degradation. This review will provide guidance for scientists to further explore novel strategies and develop feasible chemical methods for the improved control and remediation of M/NPs in the future.


Asunto(s)
Restauración y Remediación Ambiental , Contaminantes Químicos del Agua , Plásticos , Microplásticos , Agua , Contaminantes Químicos del Agua/análisis
8.
Ecotoxicol Environ Saf ; 277: 116380, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677068

RESUMEN

The interaction between microplastics (MPs) and cadmium (Cd) poses a threat to agricultural soil environments, and their effects on plant growth and rhizosphere microbial community functions are not yet clear. In this study, energy sorghum was used as a test plant to investigate the effects of two types of MPs, polystyrene (PS) and polyethylene (PE), at different particle sizes (13 µm, 550 µm) and concentrations (0.1%, 1% w/w), and Cd, as well as their interactions, on the growth of sorghum in a soil-cultivation pot experiment. The results showed that the combined effects of MP and Cd pollution on the dry weight and Cd accumulation rate in sorghum varied depending on the type, concentration, and particle size of the MPs, with an overall trend of increasing stress from combined pollution with increasing Cd content and accumulation. High-throughput sequencing analysis revealed that combined MP and Cd pollution increased bacterial diversity, and the most significant increase was observed in the abundance-based coverage estimator (ACE), Shannon, and Sobs indices in the 13 µm 1% PS+Cd treatment group. Metagenomic analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways revealed that 19 groups of metabolic pathways, including microbial metabolism and methane metabolism, differed significantly under combined MP and Cd pollution. Hierarchical clustering results indicated that Cd treatment and combined MP and Cd treatment affected the abundances of sorghum rhizosphere soil nitrogen (N) and phosphorus (P) cycling genes and that the type of MP present was an important factor affecting N and P cycling genes. The results of this study provide a basis for exploring the toxic effects of combined MP and Cd pollution and for conducting soil environmental risk assessments.


Asunto(s)
Cadmio , Microplásticos , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo , Sorghum , Sorghum/efectos de los fármacos , Sorghum/microbiología , Cadmio/toxicidad , Contaminantes del Suelo/toxicidad , Microplásticos/toxicidad , Suelo/química , Tamaño de la Partícula , Bacterias/efectos de los fármacos
9.
Clin Oral Investig ; 28(5): 276, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668916

RESUMEN

OBJECTIVE: This study sought to three-dimensionally (3D) evaluate the maxillomandibular basal bone and dentoalveolar widths using cone-beam computed tomography (CBCT) scans in adult Chinese populations with different vertical and sagittal facial skeletal patterns whilst no apparent posterior dental crossbite. MATERIALS AND METHODS: The retrospective cross-sectional comparative study enrolled CBCT images of 259 adult patients (125 males and 134 females). The subjects were divided into the hyperdivergent(n = 82), hypodivergent(n = 88), and normodivergent(n = 89) groups based on the Jarabak ratio (S-GO/N-Me), which were further divided into three subgroups of skeletal Class I, II and III, based on both the ANB angle and AF-BF parameters. ANOVA was used to analyze the extracted data of the studied groups. The intra- and inter-observer reliability was analyzed using the intra-class correlation coefficient (ICC). RESULTS: In all three vertical facial skeletal patterns, the skeletal Class II had significantly smaller mandibular basal bone width compared to skeletal Class I and Class III, both at the first molar and first premolar levels. The skeletal Class III seemed to have smaller maxillary basal bone width compared to skeletal Class I and Class II malocclusions; however, a significant difference was found only in the normodivergent pattern. As for the dentoalveolar compensation, it was most notable that in the hypodivergent growth pattern, the skeletal Class II had significantly smaller maxillary dentoalveolar width compared to the Class I and Class III groups, both at the first molar and first premolar levels. CONCLUSIONS: Based on the sample in the present study, skeletal Class II has the narrowest mandibular basal bone regardless of the vertical facial skeletal pattern. CLINICAL RELEVANCE: For Chinese adults with no apparent transverse discrepancy, the maxillomandibular basal bone and dentoalveolar widths are revealed in specific categories based on different vertical and sagittal facial skeletal patterns. In diagnosis and treatment planning, particular attention should be paid to skeletal Class II for possibly existing mandibular narrowing.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Imagenología Tridimensional , Maloclusión , Mandíbula , Humanos , Masculino , Femenino , Adulto , Estudios Transversales , Estudios Retrospectivos , Maloclusión/diagnóstico por imagen , Mandíbula/diagnóstico por imagen , China , Cefalometría , Persona de Mediana Edad
10.
J Formos Med Assoc ; 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38246800

RESUMEN

BACKGROUND/PURPOSE: Zirconia has been a popular material in dental implantology with good biocompatibility. But few research focused on its application in implant drills. This study aimed to investigate the physical, thermal, and biological effects on using the zirconia and stainless-steel drills for implant bone site preparation. METHODS: We performed a series of experiments to evaluate the physical wearing properties of zirconia and stainless-steel drills of identical diameter and similar shape. During the implant site preparation thermal test, we subjected both drills onto a resin-embedded bone, utilizing a thermal couple device without irrigation. Moreover, we conducted a cell study by collecting bone cells in vivo while preparing the implant site with both tested drills. The cell activity was evaluated through cell proliferation colorimetric analysis (XTT) and alkaline phosphatase (ALP) activity measurements. RESULTS: The zirconia drill outperforms the stainless-steel drill in terms of requiring less force, maintaining stability over repeated cutting tests, and generating lower temperatures during drilling (stainless-steel drill: 45.48 ± 1.31 °C; zirconia-coated drill: 32.98 ± 1.21 °C, P = 0.000247). Meanwhile, both types of drills show similar results in XTT colorimetric analysis and ALP activity test. CONCLUSION: The thermal effect study is more favorable for using the zirconia drill than the stainless-steel drill for bone preparation. Cytological analysis indicate that the zirconia drill produces a similar impact on bone cells activity as the stainless-steel drill. Therefore, we conclude that the zirconia drills offer a good cutting effect similar to currently available stainless-steel drills in various aspects.

11.
J Oral Rehabil ; 51(2): 380-393, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37727017

RESUMEN

BACKGROUND: Mandibular condylar hypoplasia negatively affects patient's facial appearance and dentofacial function. OBJECTIVE: To investigate the effect of local injection of the drug abaloparatide (ABL), an analogue of parathyroid hormone related protein (PTHrP), on promoting lengthening of the mandibular condyle. METHODS: Thirty adolescent male Sprague-Dawley rats were randomly divided into two groups, which received the injection of ABL or normal saline (the control) every 3 days in the temporomandibular joint (TMJ) cavity. Cone-beam computed tomography and immunohistochemistry assays were performed at 2, 4 and 6 weeks since the injection. Mandibular condylar chondrocytes (MCC) and pre-osteoblasts were treated with ABL or PBS, followed by the CCK-8 detection, IC50, real-time PCR assay, Western Blot and immunofluorescence staining. RESULTS: In vivo, compared with the control, the ABL group significantly increased the mandibular condylar process length (by 1.34 ± 0.59 mm at 6 weeks), the thickness of the cartilage layer, and enhanced the matrix synthesis. The ABL group had significant up-regulation of SOX 9, COL II, PTHrP and PTH1R, down-regulation of COL X in the cartilage, up-regulation of RUNX 2, and unchanged osteoclastogenesis in the subchondral bone. In vitro, the intra-TMJ injection of ABL promoted the MCC proliferation, with up-regulated expression of chondrogenic genes, and enhanced osteogenic differentiation of the pre-osteoblasts. CONCLUSIONS: Intra-TMJ injection of abaloparatide promotes mandibular condyle lengthening in the adolescent rats via enhancing chondrogenesis in the mandibular condylar cartilage and ossification in the subchondral bone.


Asunto(s)
Cóndilo Mandibular , Proteína Relacionada con la Hormona Paratiroidea , Humanos , Ratas , Masculino , Animales , Adolescente , Cóndilo Mandibular/metabolismo , Proteína Relacionada con la Hormona Paratiroidea/farmacología , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Osteogénesis , Ratas Sprague-Dawley , Condrogénesis , Condrocitos/metabolismo , Inyecciones Intraarticulares
12.
Molecules ; 29(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38474437

RESUMEN

Fluorescent film sensors are ideal for the real-time outdoor detection of heavy metal ions of Fe3+, but they are limited because of their low sensitivity and long response time due to their special structure. In this work, we constructed a fluorescent hydrogel for the specific detection of Fe3+, utilizing poly(9-fluorenecarboxylic acid) (PFCA) as the sensing moiety and sodium alginate (SA) as the cross-linking substrate, which exhibited a rapid and selective recognition of Fe3+ among a panel of 16 anions and 21 cations. It can sense Fe3+ at 0.1 nM immediately owing to the porous network structure of the PFCA-SA film that provided enhanced ion transport channels and active sites, and the "molecular line effect" of polymer PFCA. Moreover, we successfully applied this platform to detect Fe3+ in four different vegetable samples. This work provides an innovative and effective strategy for fabricating green and sustainable fluorescent sensors.


Asunto(s)
Compuestos Férricos , Metilgalactósidos , Polímeros , Polímeros/química , Verduras , Cationes , Alginatos
13.
Am J Orthod Dentofacial Orthop ; 165(2): 232-244, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37897486

RESUMEN

INTRODUCTION: Mandibular asymmetry has negative impacts on maxillofacial aesthetics and psychological well-being. This study investigated the effects of unilateral injection of botulinum toxin type A (BTX-A) into the masseter muscle on mandibular symmetry. METHODS: Forty Wistar rats (4-week-old) were divided into 4 groups (n = 10): control, group 1 (1U BTX-A), group 2 (3U BTX-A), and group 3 (1U BTX-A for 3 times). BTX-A was injected into the right masseter of treatment groups. Cone-beam computerized tomography scans were taken before the injection and then at 2 weeks, 4 weeks, and 6 weeks after injection. Histologic and immunohistochemical staining were done for the condylar cartilage. RNA sequencing and quantitative reverse transcription polymerase chain reaction were used to detect gene expression in the angular process. RESULTS: In Groups 2 and 3, the right angular process length and the ramus height were reduced 4 weeks after injection, resulting in the mandibular midline deviating to the right side; the right condylar cartilage had reduced thickness and decreased expression of RUNX2, SOX9, and COL II (P <0.05). Two hundred sixty-one genes were differentially expressed (256 downregulated) in the angular process at 3 days post-BTX-A injection, and the calcium signaling pathway was unveiled through the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Furthermore, TRPC1, Wnt5a, CaMKII, Ctnnb1, and RUNX2 expression were significantly downregulated at 1 and 3 days postinjection. CONCLUSIONS: Unilateral injection of BTX-A into the masseter muscle in adolescent rats induces mandibular asymmetry by suppressing the angular process growth on the injected side.


Asunto(s)
Toxinas Botulínicas Tipo A , Ratas , Animales , Toxinas Botulínicas Tipo A/farmacología , Músculo Masetero , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Ratas Wistar , Estética Dental
14.
J Am Chem Soc ; 145(29): 15888-15895, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37441722

RESUMEN

Octafluorocyclopentene (OFCP) engages linear, unprotected peptides in polysubstitution cascades that generate complex fluorinated polycycles. The reactions occur in a single flask at 0-25 °C and require no catalysts or heavy metals. OFCP can directly polycyclize linear sequences using native functionality, or fluorospiroheterocyclic intermediates can be intercepted with exogenous nucleophiles. The latter tactic generates molecular hybrids composed of peptides, sugars, lipids, and heterocyclic components. The platform can create stereoisomers of both single- and double-looped macrocycles. Calculations indicate that the latter can mimic diverse protein surface loops. Subsets of the molecules have low energy conformers that shield the polar surface area through intramolecular hydrogen bonding. A significant fraction of OFCP-derived macrocycles tested show moderate to high passive permeability in parallel artificial membrane permeability assays.


Asunto(s)
Membranas Artificiales , Péptidos , Péptidos/química
15.
Anal Chem ; 95(37): 14086-14093, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37665143

RESUMEN

In recent years, optical tweezers have become a novel tool for biodetection, and to improve the inefficiency of a single trap, the development of multitraps is required. Herein, we constructed a set of hybrid multitrap optical tweezers with the balance of stability and flexibility by the combination of two different beam splitters, a diffraction optical element (DOE) and galvano mirrors (GMs), to capture polystyrene (PS) microbeads in aqueous solutions to create an 18-trap suspended array. A sandwich hybridization strategy of DNA-miRNA-DNA was adopted to detect three kinds of target miRNAs associated with triple negative breast cancer (TNBC), in which different upconversion nanoparticles (UCNPs) with red, green, and blue emissions were applied as luminescent tags to encode the carrier PS microbeads to further indicate the levels of the targets. With encoded luminescent microbeads imaged by a three-channel microscopic system, the biodetection displayed high sensitivity with low limits of detection (LODs) of 0.27, 0.32, and 0.33 fM and exceptional linear ranges of 0.5 fM to 1 nM, 0.7 fM to 1 nM, and 1 fM to 1 nM for miR-343-3p, miR-155, and miR-199a-5p, respectively. In addition, this bead-based assay method was demonstrated to have the potential for being applied in patients' serum by satisfactory standard addition recovery experiment results.


Asunto(s)
MicroARNs , Humanos , MicroARNs/genética , Microesferas , Pinzas Ópticas , Poliestirenos
16.
Microb Cell Fact ; 22(1): 129, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452345

RESUMEN

BACKGROUND: Polyhydroxybutyrate (PHB) is currently the most common polymer produced by natural bacteria and alternative to conventional petrochemical-based plastics due to its similar material properties and biodegradability. Massilia sp. UMI-21, a newly found bacterium, could produce PHB from starch, maltotriose, or maltose, etc. and could serve as a candidate for seaweed-degrading bioplastic producers. However, the genes involved in PHB metabolism in Massilia sp. UMI-21 are still unclear. RESULTS: In the present study, we assembled and annotated the genome of Massilia sp. UMI-21, identified genes related to the metabolism of PHB, and successfully constructed recombinant Escherichia coli harboring PHB-related genes (phaA2, phaB1 and phaC1) of Massilia sp. UMI-21, which showed up to 139.41% more product. Also, the vgb gene (encoding Vitreoscilla hemoglobin) was introduced into the genetically engineered E. coli and gained up to 117.42% more cell dry weight, 213.30% more PHB-like production and 44.09% more product content. Fermentation products extracted from recombinant E. coli harboring pETDuet1-phaA2phaB1-phaC1 and pETDuet1-phaA2phaB1-phaC1-vgb were identified as PHB by Fourier Transform Infrared and Proton nuclear magnetic resonance spectroscopy analysis. Furthermore, the decomposition temperature at 10% weight loss of PHB extracted from Massilia sp. UMI-21, recombinant E. coli DH5α-pETDuet1-phaA2phaB1-phaC1 and DH5α-pETDuet1-phaA2phaB1-phaC1-vgb was 276.5, 278.7 and 286.3 °C, respectively, showing good thermal stability. CONCLUSIONS: Herein, we presented the whole genome information of PHB-producing Massilia sp. UMI-21 and constructed novel recombinant strains using key genes in PHB synthesis of strain UMI-21 and the vgb gene. This genetically engineered E. coli strain can serve as an effective novel candidate in E. coli cell factory for PHB production by the rapid cell growth and high PHB production.


Asunto(s)
Escherichia coli , Poliésteres , Escherichia coli/metabolismo , Poliésteres/metabolismo , Hidroxibutiratos/metabolismo , Plásticos/metabolismo , Bacterias/metabolismo
17.
BMC Infect Dis ; 23(1): 42, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690957

RESUMEN

BACKGROUND: Coronavirus disease 2019 is a type of acute infectious pneumonia and frequently confused with influenza since the initial symptoms. When the virus colonized the patient's mouth, it will cause changes of the oral microenvironment. However, few studies on the alterations of metabolism of the oral microenvironment affected by SARS-CoV-2 infection have been reported. In this study, we explored metabolic alterations of oral microenvironment after SARS-CoV-2 infection. METHODS: Untargeted metabolomics (UPLC-MS) was used to investigate the metabolic changes between oral secretion samples of 25 COVID-19 and 30 control participants. To obtain the specific metabolic changes of COVID-19, we selected 25 influenza patients to exclude the metabolic changes caused by the stress response of the immune system to the virus. Multivariate analysis (PCA and PLS-DA plots) and univariate analysis (students' t-test) were used to compare the differences between COVID-19 patients and the controls. Online hiplot tool was used to perform heatmap analysis. Metabolic pathway analysis was conducted by using the MetaboAnalyst 5.0 web application. RESULTS: PLS-DA plots showed significant separation of COVID-19 patients and the controls. A total of 45 differential metabolites between COVID-19 and control group were identified. Among them, 35 metabolites were defined as SARS-CoV-2 specific differential metabolites. Especially, the levels of cis-5,8,11,14,17-eicosapentaenoic acid and hexanoic acid changed dramatically based on the FC values. Pathway enrichment found the most significant pathways were tyrosine-related metabolism. Further, we found 10 differential metabolites caused by the virus indicating the body's metabolism changes after viral stimulation. Moreover, adenine and adenosine were defined as influenza virus-specific differential metabolites. CONCLUSIONS: This study revealed that 35 metabolites and tyrosine-related metabolism pathways were significantly changed after SARS-CoV-2 infection. The metabolic alterations of oral microenvironment in COVID-19 provided new insights into its molecular mechanisms for research and prognostic treatment.


Asunto(s)
COVID-19 , Gripe Humana , Humanos , SARS-CoV-2 , Cromatografía Liquida , Espectrometría de Masas en Tándem , Tirosina
18.
Environ Res ; 220: 115220, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36608764

RESUMEN

The nanoplastics released into the environment pose a critical threat to creatures, and thus it is necessary to remove them. However, their natural decomposition usually takes years or even decades, which raises an imminent demand for an efficient removal technology. Herein we report a core-shell CeOx@MnOx catalyst for enhancing ozonation of polystyrene nanoplastics in water. Ozonation achieves 31.67% molecular weight removal of polystyrene nanoplastics in the first 10 min reaction, which is increased to 51.67% in catalytic ozonation by MnOx and further improved to 73.33% in catalytic ozonation via CeOx@MnOx. The remarkable thing is the CeOx@MnOx could achieve almost 96.70% molecular weight removal after 50 min reaction. The specific catalytic mechanism is ozone decomposes into reactive oxygen radicals (•OH, •O2- and 1O2) after capturing electrons from MnOx, improving the polystyrene nanoplastics removal. Meanwhile, the Mn averaged valence state increases, making it harder to donate electrons to ozone. This can be alleviated by encapsulating the CeOx core in the MnOx, enabling electrons replenishment from the CeOx core to the MnOx shell, which is verified by the experiment and density functional theory calculations. The repeated experiment demonstrates the CeOx@MnOx possesses excellent stability, maintaining 95.25-96.70% removal efficiency of polystyrene nanoplastics. This research provides a possibility for the efficient removal of nanoplastics in water.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Agua , Microplásticos , Poliestirenos , Contaminantes Químicos del Agua/análisis , Catálisis
19.
Environ Res ; 238(Pt 1): 117151, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716388

RESUMEN

Copper oxide nanoparticles (CuO NPs) and ciprofloxacin (CIP) have ecological risk to humans and ecosystems. Polyvinylchloride microplastics (PVC MPs), as a representative of microplastics, may often coexist with CuO NPs and CIP in wastewater treatment systems due to their widespread application. However, the co-impact of PVC MPs in wastewater systems contained with CuO NPs and CIP on nitrogen removal and ecological risk is not clear. In this work, PVC MPs co-impacts on the toxicity of CuO NPs and CIP to aerobic granular sludge (AGS) systems and potential mechanisms were investigated. 10 mg/L PVC MPs co-addition did not significantly affect the nitrogen removal, but it definitely changed the microbial community structure and enhanced the propagation and horizontal transfer of antibiotics resistance genes (ARGs). 100 mg/L PVC MPs co-addition resulted in a raise of CuO NP toxicity to the AGS system, but reduced the co-toxicity of CuO NPs and CIP and ARGs expression. The co-impacts with different PVC MPs concentration influenced Cu2+ concentrations, cell membrane integrity, extracellular polymeric substances (EPS) contents and microbial communities in AGS systems, and lead to a change of nitrogen removal.


Asunto(s)
Microbiota , Nanopartículas , Humanos , Aguas del Alcantarillado , Microplásticos , Antibacterianos , Plásticos , Eliminación de Residuos Líquidos , Nitrógeno , Desnitrificación , Nanopartículas/química , Ciprofloxacina , Cloruro de Polivinilo , Reactores Biológicos
20.
Ecotoxicol Environ Saf ; 264: 115439, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37690172

RESUMEN

Microplastics (MPs) can act as carriers for environmental pollutants; therefore, MPs combined with heavy metal pollution are attracting increasing attention from researchers. In this study, the potential of the plant growth-promoting bacterium Bacillus sp. SL-413 to mitigate the stress caused by exposure to both MPs and cadmium (Cd) in sorghum plants was investigated. The effects of inoculation on sorghum biomass were investigated using hydroponic experiments, and evaluation of Cd accumulation and enzyme activity changes and transcriptomics approaches were used to analyze its effect on sorghum gene expression. The results showed that combined polyethylene (PE) and Cd pollution reduced the length and the fresh and dry weights of sorghum plants and thus exerted a synergistic toxic effect. However, inoculation with the strains alleviated the stress caused by the combined pollution and significantly increased the biomass. Inoculation increased the dry weights of the aboveground and belowground parts by 11.5-44.6% and 14.9-38.4%, respectively. Plant physiological measurements indicated that inoculation reduced the reactive oxygen species (ROS) content of sorghum by 10.5-27.2% and thereby alleviated oxidative stress. Transcriptome sequencing showed that exposure to combined Cd+MP contamination induced downregulation of gene expression, particularly that of genes related to amino sugar and nucleotide sugar metabolism, starch and sucrose metabolism, and plant hormone signal transduction, in sorghum. However, inoculation with Bacillus sp. SL-413 resulted in an increase in the proportion of upregulated genes involved in signal transduction, antioxidant defense, cell wall biology, and other metabolic pathways, which included the phenylpropanoid biosynthesis, photosynthesis, flavonoid biosynthesis, and MAPK signaling pathways. The upregulation of these genes promoted the tolerance of sorghum under combined Cd+MP pollution stress and alleviated the stress induced by these conditions. This study provides the first demonstration that plant growth-promoting bacteria can alleviate the stress caused by combined pollution with MPs and Cd by regulating plant gene expression. These findings provide a reference for the combined plant-microbial remediation of MPs and Cd.


Asunto(s)
Bacillus , Sorghum , Cadmio/toxicidad , Antioxidantes , Plásticos , Microplásticos , Sorghum/genética , Bacterias , Bacillus/genética , Peso Corporal , Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA