Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Small ; 19(3): e2206657, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36394193

RESUMEN

Developing nature-inspired nanomaterials with enzymatic activity is essential in combating bacterial biofilms. Here, it is reported that incorporating the carboxylic acid in phenolic/Fe nano-networks can efficiently manipulate their peroxidase-like activity via the acidic microenvironment and neighboring effect of the carboxyl group. The optimal gallic acid/Fe (GA/Fe) nano-networks demonstrate highly enzymatic activity in catalyzing H2 O2 into oxidative radicals, damaging the cell membrane and extracellular DNA in Streptococcus mutans biofilms. Theoretical calculation suggests that the neighboring carboxyl group can aid the H2 O2 adsorption, free radical generation, and catalyst reactivation, resulting in superb catalytic efficiency. Further all-atom simulation suggests the peroxidation of lipids can increase the cell membrane fluidity and permeability. Also, GA/Fe nano-networks show great potential in inhibiting tooth decay and treating other biofilm-associated diseases without affecting the commensal oral flora. This strategy provides a facile and scale-up way to prepare the enzyme-like materials and manipulate their enzymatic activity for biomedical applications.


Asunto(s)
Peroxidasa , Streptococcus mutans , Peroxidasa/metabolismo , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Biopelículas
2.
J Control Release ; 368: 740-755, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499092

RESUMEN

Chronic wound treatment has emerged as a significant healthcare concern worldwide due to its substantial economic burden and the limited effectiveness of current treatments. Effective management of biofilm infections, regulation of excessive oxidative stress, and promotion of tissue regeneration are crucial for addressing chronic wounds. Hydrogel stands out as a promising candidate for chronic wound treatment. However, its clinical application is hindered by the difficulty in designing and fabricating easily and conveniently. To overcome these obstacles, we present a supermolecular G-quadruplex hydrogel with the desired multifunction via a dynamic covalent strategy and Hoogsteen-type hydrogen bonding. The G-quadruplex hydrogel is made from the self-assembly of guanosine, 2-formylphenyboronic acid, polyethylenimine, and potassium chloride, employing dynamic covalent strategy and Hoogsteen-type hydrogen bonding. In the acidic/oxidative microenvironment associated with bacterial infections, the hydrogel undergoes controlled degradation, releasing the polyethylenimine domain, which effectively eliminates bacteria. Furthermore, nanocomplexes comprising guanosine monophosphate and manganese sulfate are incorporated into the hydrogel skeleton, endowing it with the ability to scavenge reactive oxygen species and modulate macrophages. Additionally, the integration of basic fibroblast growth factor into the G-quadruplex skeleton through dynamic covalent bonds facilitates controlled tissue regeneration. In summary, the facile preparation process and the incorporation of multiple functionalities render the G-quadruplex hydrogel a highly promising candidate for advanced wound dressing. It holds great potential to transition from laboratory research to clinical practice, addressing the pressing needs of chronic wound management.


Asunto(s)
Sordera , Hidrogeles , Humanos , Polietileneimina , Vendajes , Antibacterianos/farmacología , Biopelículas
3.
Colloids Surf B Biointerfaces ; 231: 113542, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37717312

RESUMEN

The presence of bacterial biofilms has presented a significant challenge to human health. This study presents the development of biofilm microenvironment-responsive polymeric micelles as a novel approach to address the challenges posed by bacterial biofilms. These micelles are composed of two key components: a zwitterionic component, inspired by protein isoelectric points, containing balanced quantities of primary amines and carboxylic groups that undergo a positive charge transformation in acidic microenvironments, and a hydrophobic triclosan conjugate capable of releasing triclosan in the presence of bacterial lipases. Through the synergistic combination of pH-responsiveness and lipase-responsiveness, we have significantly improved drug penetration into biofilms and enhanced its efficacy in killing bacteria. With their remarkable drug-loading capacity and the ability to specifically target and eliminate bacteria within biofilms, these zwitterionic polymeric micelles hold great promise as an effective alternative for treating biofilm-associated infections. Their unique properties enable efficient drug delivery and heightened effectiveness against biofilm-related infections.


Asunto(s)
Antiinfecciosos , Triclosán , Humanos , Micelas , Triclosán/farmacología , Triclosán/química , Antibacterianos/farmacología , Antibacterianos/química , Portadores de Fármacos/química , Concentración de Iones de Hidrógeno , Antiinfecciosos/farmacología , Biopelículas , Polímeros/farmacología , Polímeros/química
4.
Adv Mater ; 35(31): e2301664, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37279172

RESUMEN

Due to the emergence of drug resistance in bacteria and biofilm protection, achieving a satisfactory therapeutic effect for bacteria-infected open wounds with conventional measures is problematic. Here, a photothermal cascade nano-reactor (CPNC@GOx-Fe2+ ) is constructed through a supramolecular strategy through hydrogen bonding and coordination interactions between chitosan-modified palladium nano-cube (CPNC), glucose oxidase (GOx), and ferrous iron (Fe2+ ). CPNC@GOx-Fe2+ exhibits excellent photothermal effects and powers the GOx-assisted cascade reaction to generate hydroxyl radicals, enabling photothermal and chemodynamic combination therapy against bacteria and biofilms. Further proteomics, metabolomics, and all-atom simulation results indicate that the damage of the hydroxyl radical to the function and structure of the cell membrane and the thermal effect enhance the fluidity and inhomogeneity of the bacterial cell membrane, resulting in the synergistic antibacterial effect. In the biofilm-associated tooth extraction wound model, the hydroxyl radical generated from the cascade reaction process can initiate the radical polymerization process to form a hydrogel in situ for wound protection. In vivo experiments confirm that synergistic antibacterial and wound protection can accelerate the healing of infected tooth-extraction wounds without affecting the oral commensal microbiota. This study provides a way to propose a multifunctional supramolecular system for the treatment of open wound infection.


Asunto(s)
Radical Hidroxilo , Extracción Dental , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Membrana Celular , Glucosa Oxidasa , Hidrogeles
5.
Adv Healthc Mater ; 8(2): e1801359, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30549448

RESUMEN

Poly(ß-amino ester) (abbreviated as PBAE or PAE) refers to a polymer synthesized from an acrylate and an amine by Michael addition and has properties inherent to tertiary amines and esters, such as pH responsiveness and biodegradability. The versatility of building blocks provides a library of polymers with miscellaneous physicochemical and mechanical properties. When used alone or together with other materials, PBAEs can be fabricated into different formulations in order to fulfill various requirements in drug delivery (for instance, gene, anticancer drugs, and antimicrobials delivery) and natural complex mimicry (nanochaperones). This progress report discusses the recent developments in design, synthesis, formulations, and applications of PBAEs in biomedical fields and provides a perspective view for the future of the PBAEs.


Asunto(s)
Sistemas de Liberación de Medicamentos , Técnicas de Transferencia de Gen , Nanoestructuras/química , Polímeros/química , Polímeros/uso terapéutico , Acrilatos/química , Aminas/química , Animales , Autofagia , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Ésteres/química , Técnicas de Transferencia de Gen/instrumentación , Humanos , Hidrogeles/química , Micelas , Estructura Molecular , Fotoquimioterapia/métodos , Polimerizacion , Polímeros/síntesis química
6.
Macromol Biosci ; 19(12): e1900289, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31642591

RESUMEN

Bacterial infection is becoming the biggest threat to human health. The scenario is partly due to the ineffectiveness of the conventional antibiotic treatments against the emergence of multidrug-resistant bacteria and partly due to the bacteria living in biofilms or cells. Adaptive biomaterials can change their physicochemical properties in the microenvironment of bacterial infection, thereby facilitating either their interactions with bacteria or drug release. The trends in treating bacterial infections using adaptive biomaterials-based systems are flourishing and generate innumerous possibility to design novel antimicrobial therapeutics. This feature article aims to summarize the recent developments in the formulations, mechanisms, and advances of adaptive materials in bacterial infection diagnosis, contact killing of bacteria, and antimicrobial drug delivery. Also, the challenges and limitations of current antimicrobial treatments based on adaptive materials and their clinical and industrial future prospects are discussed.


Asunto(s)
Antiinfecciosos/síntesis química , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Técnicas Biosensibles , Interacciones Huésped-Patógeno , Nanoestructuras/química , Antiinfecciosos/farmacología , Aptámeros de Nucleótidos/química , Aptámeros de Péptidos/química , Bacterias/crecimiento & desarrollo , Bacterias/patogenicidad , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Colorantes Fluorescentes/síntesis química , Humanos , Concentración de Iones de Hidrógeno , Hidrolasas , Indoles/química , Indoles/farmacología , Plancton/efectos de los fármacos , Plancton/crecimiento & desarrollo , Plancton/patogenicidad , Polímeros/química , Polímeros/farmacología
7.
Colloids Surf B Biointerfaces ; 174: 352-359, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30472621

RESUMEN

Novel artificial enzymes are highly desired to overcome the shortcomings of natural enzymes during industrial or biological applications. Here we designed and prepared nanogel-based artificial enzymes (NAEs) to mimic natural horseradish peroxidase (HRP) using a facile one-pot, scalable method. The poly(N-isopropylacrylamide) (PNIPAM) matrix provided a temperature-responsive and size-controllable scaffold for the NAEs, and 1-vinylimidazole (Vim) moieties stabilized the enzymatic centers (Hemin) through coordination interaction. The feeding ratios of the components to prepare NAEs were subsequently studied and optimized to ensure the NAEs possess the highest catalytic activity and stability. The optimized NAEs were quite stable and can maintain their catalytic activities over a broad range of heat or pH treatments, and a long storage period as well. The NAEs are active to catalytic oxidation of several azo compounds and their activities can easily be switched on/off by changing the surrounding temperature. Taken together, these easily made, highly stable, efficient and activity-switchable NAEs could mimic natural HRP while overcoming their shortcomings and have a potential in wastewater treatment and controllable catalysis.


Asunto(s)
Resinas Acrílicas/química , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Hemina/química , Peroxidasa de Rábano Silvestre/química , Nanopartículas/química , Polietileneimina/química , Catálisis , Peroxidasa de Rábano Silvestre/metabolismo , Oxidación-Reducción , Polietilenglicoles/química , Temperatura
8.
Sheng Wu Gong Cheng Xue Bao ; 34(7): 1189-1196, 2018 Jul 25.
Artículo en Zh | MEDLINE | ID: mdl-30058317

RESUMEN

Displaying Candida antarctica lipase B (CALB) on the cell surface of Aspergillus niger is effectively applied for the industries of food, cosmetics, pharmaceutical and so on. Displaying CALB using induced promoter of glucoamylase on the cell surface of A. niger SH-1 has some problems such as inhibiting its expression under high concentration of glucose, mycelium cleavage and decreasing enzyme activity in the later period of fermentation process. Displaying CALB manipulated by constitutive promoter from glyceraldehyde-3-phosphate dehydrogenase instead of glucoamylase on the cell surface of A. niger SH-1, called AN-GpdA, could solve the above problems effectively. Furthermore, it can not only use glucose, but also xylose as a sole carbon source. Enzyme activity of AN-GpdA using xylose for fermentation reached 1 100.28 U/g of dry cell. We also used lignocellulose such as the hydrolysate of bagasse for fermentation with good performance. The result would provide a novel strategy for the utilization of bagasse.


Asunto(s)
Aspergillus niger , Fermentación , Proteínas Fúngicas/biosíntesis , Lipasa/biosíntesis , Celulosa , Microbiología Industrial , Lignina , Microorganismos Modificados Genéticamente , Regiones Promotoras Genéticas
9.
Acta Biomater ; 79: 331-343, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30172935

RESUMEN

Conventional antimicrobials are becoming increasingly ineffective for treating bacterial infection due to the emergence of multi-drug resistant (MDR) pathogens. In addition, the biofilm-mode-of-growth of infecting bacteria impedes antimicrobial penetration in biofilms. Here, we report on poly(ethylene)glycol-poly(ß-amino esters) (PEG-PAE) micelles with conjugated antimicrobials, that can uniquely penetrate biofilms, target themselves to bacterial cell surfaces once inside the low-pH environment of a biofilm and release conjugated antimicrobials through degradation of their ester-linkage with PAE by bacterial lipases. In vitro, PEG-PAE micelles with conjugated Triclosan (PEG-PAE-Triclosan) yielded no inadvertent leakage of their antimicrobial cargo and better killing of MDR Staphylococcus aureus, Escherichia coli and oral streptococcal biofilms than Triclosan in solution. In mice, PEG-PAE-Triclosan micelles with conjugated Triclosan yielded better eradication efficacy towards a MDR S. aureus-infection compared with Triclosan in solution and Triclosan-loaded micelles at equal Triclosan-equivalent concentrations. Ex vivo exposure of multi-species oral biofilms collected from orthodontic patients to PEG-PAE-Triclosan micelles, demonstrated effective bacterial killing at 30-40 fold lower Triclosan-equivalent concentrations than achieved by Triclosan in solution. Importantly, Streptococcus mutans, the main causative organism of dental caries, was preferentially killed by PEG-PAE-Triclosan micelles. Thus PEG-PAE-Triclosan micelles present a promising addendum to the decreasing armamentarium available to combat infection in diverse sites of the body. STATEMENT OF SIGNIFICANCE: pH-adaptive polymeric micelles with conjugated antimicrobials can efficiently eradicate infectious biofilms from diverse body sites in mice and men. An antimicrobial was conjugated through an ester-linkage to a poly(ethylene glycol) (PEG)/poly(ß-amino ester) block copolymer to create micellar nanocarriers. Stable micelle structures were formed by the hydrophobic poly(ß-amino ester) inner core and a hydrophilic PEG outer shell. Thus formed PEG-PAE-Triclosan micelles do not lose their antimicrobial cargo underway to an infection site through the blood circulation, but penetrate and accumulate in biofilms to release antimicrobials once inside a biofilm through degradation of its ester-linkage by bacterial lipases, to kill biofilm-embedded bacteria at lower antimicrobial concentrations than when applied in solution. PEG-PAE-Triclosan micelles effectively eradicate biofilms of multi-drug-resistant pathogens and oral bacteria, most notably highly cariogenic Streptococcus mutans, in mice and men respectively, and possess excellent clinical translation possibilities.


Asunto(s)
Antiinfecciosos/uso terapéutico , Biopelículas/efectos de los fármacos , Portadores de Fármacos/química , Modelos Biológicos , Nanopartículas/química , Infecciones Estafilocócicas/tratamiento farmacológico , Animales , Antiinfecciosos/farmacología , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Humanos , Concentración de Iones de Hidrógeno , Ratones Endogámicos BALB C , Ratones Desnudos , Micelas , Viabilidad Microbiana/efectos de los fármacos , Boca/microbiología , Nanopartículas/ultraestructura , Ortodoncia , Polietilenglicoles/síntesis química , Polietilenglicoles/química , Polímeros/síntesis química , Polímeros/química , Infecciones Estafilocócicas/patología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Triclosán/química
10.
ACS Nano ; 10(4): 4779-89, 2016 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-26998731

RESUMEN

Biofilms cause persistent bacterial infections and are extremely recalcitrant to antimicrobials, due in part to reduced penetration of antimicrobials into biofilms that allows bacteria residing in the depth of a biofilm to survive antimicrobial treatment. Here, we describe the preparation of surface-adaptive, Triclosan-loaded micellar nanocarriers showing (1) enhanced biofilm penetration and accumulation, (2) electrostatic targeting at acidic pH toward negatively charged bacterial cell surfaces in a biofilm, and (3) antimicrobial release due to degradation of the micelle core by bacterial lipases. First, it was established that mixed-shell-polymeric-micelles (MSPM) consisting of a hydrophilic poly(ethylene glycol) (PEG)-shell and pH-responsive poly(ß-amino ester) become positively charged at pH 5.0, while being negatively charged at physiological pH. This is opposite to single-shell-polymeric-micelles (SSPM) possessing only a PEG-shell and remaining negatively charged at pH 5.0. The stealth properties of the PEG-shell combined with its surface-adaptive charge allow MSPMs to penetrate and accumulate in staphylococcal biofilms, as demonstrated for fluorescent Nile red loaded micelles using confocal-laser-scanning-microscopy. SSPMs, not adapting a positive charge at pH 5.0, could not be demonstrated to penetrate and accumulate in a biofilm. Once micellar nanocarriers are bound to a staphylococcal cell surface, bacterial enzymes degrade the MSPM core to release its antimicrobial content and kill bacteria over the depth of a biofilm. This constitutes a highly effective pathway to control blood-accessible staphylococcal biofilms using antimicrobials, bypassing biofilm recalcitrance to antimicrobial penetration.


Asunto(s)
Antibacterianos/química , Biopelículas/efectos de los fármacos , Portadores de Fármacos/química , Micelas , Nanopartículas/química , Staphylococcaceae/efectos de los fármacos , Antibacterianos/farmacología , Portadores de Fármacos/farmacología , Liberación de Fármacos , Colorantes Fluorescentes/química , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Permeabilidad , Polietilenglicoles/química , Electricidad Estática , Propiedades de Superficie , Triclosán/química , Triclosán/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA