Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Pharm ; 21(6): 3053-3060, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38743264

RESUMEN

There is considerable interest in quantifying anti-PEG antibodies, given their potential involvement in accelerated clearance, complement activation, neutralization, and acute reactions associated with drug delivery systems. Published and commercially available anti-PEG enzyme-linked immunosorbent assays (ELISAs) differ significantly in terms of reagents and conditions, which could be confusing to users who want to perform in-house measurements. Here, we optimize the ELISA protocol for specific detection of anti-PEG IgG and IgM in sera from healthy donors and in plasma from cancer patients administered with PEGylated liposomal doxorubicin. The criterion of specificity is the ability of free PEG or PEGylated liposomes to inhibit the ELISA signals. We found that coating high-binding plates with monoamine methoxy-PEG5000, as opposed to bovine serum albumin-PEG20000, and blocking with 1% milk, as opposed to albumin or lysozyme, significantly improve the specificity, with over 95% of the signal being blocked by competition. Despite inherent between-assay variability, setting the cutoff value of the optical density at the 80th percentile consistently identified the same subjects. Using the optimized assay, we longitudinally measured levels of anti-PEG IgG/IgM in cancer patients before and after the PEGylated liposomal doxorubicin chemotherapy cycle (1 month apart, three cycles total). Antibody titers did not show any increase but rather a decrease between treatment cycles, and up to 90% of antibodies was bound to the infused drug. This report is a step toward harmonizing anti-PEG assays in human subjects, emphasizing the cost-effectiveness and optimized specificity.


Asunto(s)
Doxorrubicina , Ensayo de Inmunoadsorción Enzimática , Inmunoglobulina G , Inmunoglobulina M , Polietilenglicoles , Humanos , Doxorrubicina/análogos & derivados , Ensayo de Inmunoadsorción Enzimática/métodos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Liposomas , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología
2.
Langmuir ; 40(22): 11401-11410, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38767862

RESUMEN

To functionalize interfaces with supported biomembranes and membrane proteins, the challenge is to build stabilized and supported systems that mimic the native lipid microenvironment. Our objective is to control substrate-to-biomembrane spacing and the tethering chemistry so proteoliposomes can be fused and conjugated without perturbation of membrane protein function. Furthermore, the substrates need to exhibit low protein and antibody nonspecific binding to use these systems in assays. We have employed protein orthogonal coupling schemes in concert with multiarm poly(ethylene glycol) (PEG) technology to build supported biomembranes on microspheres. The lipid bilayer structures and tailored substrates of the microsphere-supported biomembranes were analyzed via flow cytometry, confocal fluorescence, and super-resolution imaging microscopy, and the lateral fluidity was quantified using fluorescence recovery after photobleaching (FRAP) techniques. Under these conditions, the 4-arm-PEG20,000-NH2 based configuration gave the most desirable tethering system based on lateral diffusivity and coverage.


Asunto(s)
Membrana Dobles de Lípidos , Polietilenglicoles , Polietilenglicoles/química , Membrana Dobles de Lípidos/química , Microesferas , Recuperación de Fluorescencia tras Fotoblanqueo , Polímeros/química
3.
BMC Anesthesiol ; 24(1): 121, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38539078

RESUMEN

INTRODUCTION: Postoperative nausea and vomiting (PONV) is one of the most common adverse events following orthognathic surgery. It's a distressing feeling for patients and continues to be the cause of postoperative complications such as bleeding, delayed healing, and wound infection. This scoping review aims to identify effective PONV prophylaxis strategies during orthognathic surgery that have emerged in the past 15 years. METHODS: We searched Pubmed, Cochrane Controlled Register of Trials, and Embase from 2008 to May 2023. Studies meeting the following criteria were eligible for inclusion: (1) recruited patients undergo any orthognathic surgery; (2) evaluated any pharmacologic or non-pharmacologic method to prevent PONV. Studies meeting the following criteria were excluded: (1) case series, review papers, or retrospective studies; (2) did not report our prespecified outcomes. RESULTS: Twenty-one studies were included in this review. Pharmacological methods for PONV prevention include ondansetron and dexamethasone (3 studies), peripheral nerve block technique (4 studies), dexmedetomidine (1 study), pregabalin (2 studies), nefopam (2 studies), remifentanil (1 study), propofol (2 studies), and penehyclidine (1 study). Non-pharmacologic methods include capsicum plaster (1 study), throat packs (2 studies) and gastric aspiration (2 studies). CONCLUSIONS: Based on current evidence, we conclude that prophylactic antiemetics like dexamethasone, ondansetron, and penehyclidine are the first defense against PONV. Multimodal analgesia with nerve block techniques and non-opioid analgesics should be considered due to their notable opioid-sparing and PONV preventive effect. For the non-pharmacological methods, throat packs are not recommended for routine use because of their poor effect and serious complications. More prospective RCTs are required to confirm whether gastric aspiration can prevent PONV effectively for patients undergoing orthognathic surgery.


Asunto(s)
Antieméticos , Cirugía Ortognática , Humanos , Náusea y Vómito Posoperatorios/prevención & control , Náusea y Vómito Posoperatorios/tratamiento farmacológico , Ondansetrón/uso terapéutico , Estudios Prospectivos , Estudios Retrospectivos , Antieméticos/uso terapéutico , Dexametasona/uso terapéutico
4.
Artículo en Inglés | MEDLINE | ID: mdl-38290450

RESUMEN

Objective: To observe the therapeutic effects of bracketless and invisible orthodontic treatment on periodontitis, as well as on gingival crevicular fluid and serum interleukin-6 (IL-6), matrix metalloproteinase-8 (MMP-8) and tumors. The impact of necrosis factor-alpha (TNF-α) levels fills the current knowledge gap regarding the impact of different orthodontic treatment modalities on biomarker levels in periodontitis patients. Methods: 100 patients with malocclusion secondary to periodontitis were selected as subjects.They were divided into a control group (n=50) and a study group (n=50) according to the random number method. The control group was treated with a straight wire appliances, and the study group was given bracketless and invisible orthodontic treatment. Clinical effects, Periodontal indicators [plaque index (PLI), gingival crevicular bleeding index (SBI), gingival index (GI), periodontal pocket probe depth (PD), clinical attachment loss (CAL)], gingival crevicular fluid and serum IL-6, MMP-8 and TNF-α levels and the incidence of adverse reactions were compared between the two groups. The uniqueness of this method is that it compares the impact of traditional straight-wire orthodontic treatment and invisible orthodontic treatment without brackets on biomarker levels and clinical effects in patients with periodontitis. In order to understand the role of orthodontic treatment methods in Provides useful information for use in periodontitis treatment. Results: The main findings of this study highlight the significant impact of bracketless clear braces in improving periodontal indicators and cytokine levels. Patients treated with bracketless clear braces demonstrate better clinical outcomes in periodontitis treatment compared with traditional straight-wire orthodontic treatment. The response rate of the study group was higher than that of the control group (94.00% vs. 72.00%) (P < .05). After 2 years of treatment, PLT, SBI, GI, PD and CAL were decreased in both groups and the observation group was significantly lower than the control group (P < .05). After 6 months of treatment, the levels of IL-6, MMP-8 and TNF-α in gingival crevicular fluid and serum were decreased in both groups, and the observation group was significantly lower than the control group (P < .05). There was no significant difference in the incidence of adverse reactions between the two groups (P > .05). Conclusion: The treatment of periodontitis without brackets has a significant effect, which can improve the periodontal condition and reduce the levels of IL-6, MMP-8 and TNF-α in gingival crevicular fluid and serum. Bracketless invisible braces have shown potential clinical significance in improving periodontal indicators and cytokine levels in patients with periodontitis, providing support for providing more comfortable and effective orthodontic treatment options, which may help promote patients' Oral health. These findings suggest the positive role of bracketless invisible braces in comprehensive periodontal treatment, which is expected to influence the practice of orthodontics and periodontal treatment and improve patient treatment experience and effects.

5.
Clin Oral Investig ; 28(6): 325, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762665

RESUMEN

OBJECTIVE: With the increasing maturity of 3D printing technology, the application of digital guide template in the extraction of impacted teeth has become more sophisticated. However, for maxillary palatal deeply impacted teeth, there still exist significant clinical challenges. This experiment introduces a novel digital guide template and innovatively employs a flapless technique to explore a minimally invasive approach for the extraction of palatal deeply impacted teeth. METHODS: This experiment included 40 patients diagnosed with palatal completely impacted teeth, randomly divided into an experimental group and a control group. The experimental group used the new digital guide template for flapless extraction, while the control group employed the traditional freehand flap technique. RESULTS: The experimental group can significantly reduce the localization time of palatally impacted teeth (P < 0.001), with total surgery times of 18.15 ± 4.88 min and 22.00 ± 7.71 min for the experimental and control groups, respectively (P = 0.067). Although there were no significant statistical differences between the two groups in terms of intraoperative bleeding, adjacent tooth damage, infection, or damage to nearby important anatomical structures, the experimental group showed significant improvements in postoperative pain (P < 0.05), swelling (P < 0.001), and patient satisfaction (P < 0.001) compared to the control group. CONCLUSION: Compared to traditional freehand flap surgery, flapless extraction of palatally impacted teeth guided by digital templates significantly reduces the localization time of impacted teeth and demonstrates notable advantages in some postoperative complications. Future studies with larger sample sizes are needed to substantiate the feasibility of this technique.


Asunto(s)
Estudios de Factibilidad , Extracción Dental , Diente Impactado , Adolescente , Adulto , Femenino , Humanos , Masculino , Maxilar/cirugía , Satisfacción del Paciente , Impresión Tridimensional , Cirugía Asistida por Computador/métodos , Extracción Dental/métodos , Diente Impactado/cirugía , Resultado del Tratamiento
6.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673725

RESUMEN

Human-induced pluripotent stem cells (hiPSCs) offer a promising source for generating dental epithelial (DE) cells. Whereas the existing differentiation protocols were time-consuming and relied heavily on growth factors, herein, we developed a three-step protocol to convert hiPSCs into DE cells in 8 days. In the first phase, hiPSCs were differentiated into non-neural ectoderm using SU5402 (an FGF signaling inhibitor). The second phase involved differentiating non-neural ectoderm into pan-placodal ectoderm and simultaneously inducing the formation of oral ectoderm (OE) using LDN193189 (a BMP signaling inhibitor) and purmorphamine (a SHH signaling activator). In the final phase, OE cells were differentiated into DE through the application of Purmorphamine, XAV939 (a WNT signaling inhibitor), and BMP4. qRT-PCR and immunostaining were performed to examine the expression of lineage-specific markers. ARS staining was performed to evaluate the formation of the mineralization nodule. The expression of PITX2, SP6, and AMBN, the emergence of mineralization nodules, and the enhanced expression of AMBN and AMELX in spheroid culture implied the generation of DE cells. This study delineates the developmental signaling pathways and uses small molecules to streamline the induction of hiPSCs into DE cells. Our findings present a simplified and quicker method for generating DE cells, contributing valuable insights for dental regeneration and dental disease research.


Asunto(s)
Diferenciación Celular , Células Epiteliales , Células Madre Pluripotentes Inducidas , Morfolinas , Purinas , Pirimidinas , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Diente/citología , Ectodermo/citología , Ectodermo/metabolismo , Células Cultivadas , Proteína Morfogenética Ósea 4/metabolismo , Proteína Morfogenética Ósea 4/farmacología , Pirazoles/farmacología , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología
7.
Sci Total Environ ; 946: 174215, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38914339

RESUMEN

Microplastics (MPs) are pervasive across ecosystems, presenting substantial risks to human health. Developing a comprehensive review of MPs is crucial due to the growing evidence of their widespread presence and potential harmful effects. Despite the growth in research, considerable uncertainties persist regarding their transport dynamics, prevalence, toxicological impacts, and the potential long-term health effects they may cause. This review thoroughly evaluates recent advancements in research on MPs and their implications for human health, including estimations of human exposure through ingestion, inhalation, and skin contact. It also quantifies the distribution and accumulation of MPs in various organs and tissues. The review discusses the mechanisms enabling MPs to cross biological barriers and the role of particle size in their translocation. To ensure methodological rigor, this review adheres to the PRISMA guidelines, explicitly detailing the literature search strategy, inclusion criteria, and the quality assessment of selected studies. The review concludes that MPs pose significant toxicological risks, identifies critical gaps in current knowledge, and recommends future research directions to elucidate the prolonged effects of MPs on human health. This work aims to offer a scientific framework for mitigating MP-related hazards and establishes a foundation for ongoing investigation.


Asunto(s)
Exposición a Riesgos Ambientales , Microplásticos , Microplásticos/toxicidad , Humanos , Contaminantes Químicos del Agua/toxicidad , Monitoreo del Ambiente
8.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(3): 286-295, 2024 Jun 01.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-39049647

RESUMEN

OBJECTIVES: This study aimed to investigate the temporal and spatial changes in the expression of periostin during periodontal inflammation in mice. METHODS: A periodontitis model was constructed using silk thread ligation. Mice were randomly divided into five groups including control group, 4-day ligation group, 7-day ligation group, 14-day ligation group, and self-healing group (thread removal for 14 days after 14-day ligation). Micro-CT and histological staining were performed to characterize the dynamic changes in the mouse periodontal tissue in each group. RNAscope and immunohistochemical staining were used to analyze the pattern of changes in periostin at various stages of periodontitis. The cell experiment was divided into three groups: control group, lipopolysaccharide (LPS) stimulation group (treated with LPS for 12 h), and LPS stimulation removal group (treated with LPS for 3 h followed by incubation with medium for 9 h). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of periostin, transforming growth factor-ß1 (TGF-ß1), and matrix metalloproteinase 2 (MMP2). RESULTS: Significant alveolar bone resorption was observed 7 days after ligation. With increasing duration of ligation, the damage to the mouse periodontal tissue was aggravated, which manifested as increased osteoclasts, widening of the periodontal membrane space, and decreased alveolar bone height. Some degree of periodontal tissue repair was observed in the self-healing group. Periostin expression decreased at 4 and 7 days compared with the control group and increased at 14 days compared with 4 and 7 days. A significant recovery was found in the self-healing group. The qRT-PCR results showed that the expression of periostin and TGF-ß1 in the LPS stimulation group decreased compared with that in the control group but significantly recovered in the LPS removal group. CONCLUSIONS: Periostin expression in the PDL of mice showed a downward and upward trend with inflammation progression. The significant recovery of periostin expression after removing inflammatory stimuli may be related to TGF-ß1, which is crucial to maintain the integrity of the PDL.


Asunto(s)
Pérdida de Hueso Alveolar , Moléculas de Adhesión Celular , Modelos Animales de Enfermedad , Lipopolisacáridos , Periodontitis , Factor de Crecimiento Transformador beta1 , Animales , Moléculas de Adhesión Celular/metabolismo , Ratones , Periodontitis/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Pérdida de Hueso Alveolar/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Microtomografía por Rayos X , Periostina
9.
J Mater Chem B ; 12(26): 6452-6465, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38860913

RESUMEN

The regeneration of demineralized enamel holds great significance in the treatment of dental caries. Amelogenin (Ame), an essential protein for mediating natural enamel growth, is no longer secreted after enamel has fully matured in childhood. Although biomimetic mineralization based on peptides or proteins has made significant progress, easily accessible, low-cost, biocompatible and highly effective Ame mimics are still lacking. Herein, we construct a series of amphiphilic branched polypeptides (CAMPs) by facile coupling of the Ame's C-terminal segment and poly(γ-benzyl-L-glutamate), which serves to simulate the Ame's hydrophobic N-terminal segment. Among them, CAMP15 is the best biomimetic mineralization template with great self-assembly performance to guide the oriented crystallization of hydroxyapatite and is capable of inhibiting the adhesion of Streptococcus mutans and Staphylococcus aureus on the enamel surfaces. This work highlights the potential application of amphiphilic branched polypeptide as Ame mimics in repairing defected enamel, providing a promising strategy for prevention and treatment of dental caries.


Asunto(s)
Amelogenina , Materiales Biomiméticos , Esmalte Dental , Péptidos , Streptococcus mutans , Amelogenina/química , Amelogenina/farmacología , Péptidos/química , Péptidos/farmacología , Péptidos/síntesis química , Esmalte Dental/química , Esmalte Dental/efectos de los fármacos , Streptococcus mutans/efectos de los fármacos , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Materiales Biomiméticos/síntesis química , Staphylococcus aureus/efectos de los fármacos , Animales , Propiedades de Superficie , Humanos , Adhesión Bacteriana/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química
10.
J Bone Miner Res ; 39(1): 59-72, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38630879

RESUMEN

Identification of promising seed cells plays a pivotal role in achieving tissue regeneration. This study demonstrated that LepR-expressing cells (LepR+ cells) are required for maintaining periodontal homeostasis at the adult stage. We further investigated how LepR+ cells behave in periodontal healing using a ligature-induced periodontitis (PD) and a self-healing murine model with LepRCre/+; R26RtdTomato/+ mice. Lineage tracing experiments revealed that the largely suppressed osteogenic ability of LepR+ cells results from periodontal inflammation. Periodontal defects were partially recovered when the ligature was removed, in which the osteogenic differentiation of LepR+ cell lineage was promoted and contributed to the newly formed alveolar bone. A cell ablation model established with LepRCre/+; R26RtdTomato/+; R26RDTA/+ mice further proved that LepR+ cells are an important cell source of newly formed alveolar bone. Expressions of ß-catenin and LEF1 in LepR+ cells were upregulated when the inflammatory stimuli were removed, which are consistent with the functional changes observed during periodontal healing. Furthermore, the conditional upregulation of WNT signaling or the application of sclerostin neutralized antibody promoted the osteogenic function of LepR+ cells. In contrast, the specific knockdown of ß-catenin in LepR+ human periodontal ligament cells with small interfering RNA caused arrested osteogenic function. Our findings identified the LepR+ cell lineage as a critical cell population for endogenous periodontal healing post PD, which is regulated by the WNT signaling pathway, making it a promising seed cell population in periodontal tissue regeneration.


Asunto(s)
Osteogénesis , Periodontitis , Adulto , Ratones , Humanos , Animales , beta Catenina/metabolismo , Ligamento Periodontal/metabolismo , Inflamación , Vía de Señalización Wnt/fisiología , Diferenciación Celular , Células Cultivadas
11.
Toxicon ; 247: 107857, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38996976

RESUMEN

Fluoride is a double-edged sword. It was widely used for early caries prevention while excessive intake caused a toxicology effect, affected enamel development, and resulted in dental fluorosis. The study aimed to evaluate the protective effect and mechanism of Epigallocatechin-3-gallate (EGCG) on the apoptosis induced by fluoride in ameloblast-like cells. We observed that NaF triggered apoptotic alterations in cell morphology, excessive NaF arrested cell cycle at the G1, and induced apoptosis by up-regulating Bax and down-regulating Bcl-2. NaF activated the insulin-like growth factor receptor (IGFR), and phosphatidylinositol-3-hydroxylase (p-PI3K), while dose-dependently down-regulating the expression of Forkhead box O1 (FoxO1). EGCG supplements reversed the changes in LS8 morphology, the cell cycle, and apoptosis induced by fluoride. These results indicated that EGCG possesses a protective effect against fluoride toxicity. Furthermore, EGCG suppressed the activation of p-PI3K and the down-regulation of FoxO1 caused by fluoride. Collectively, our findings suggested that EGCG attenuated fluoride-induced apoptosis by inhibiting the PI3K/FoxO1 signaling pathway. EGCG may serve as a new alternative method for dental fluorosis prevention, control, and treatment.


Asunto(s)
Ameloblastos , Apoptosis , Catequina , Fluoruros , Fosfatidilinositol 3-Quinasas , Transducción de Señal , Catequina/análogos & derivados , Catequina/farmacología , Apoptosis/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Fluoruros/toxicidad , Fluoruros/farmacología , Ameloblastos/efectos de los fármacos , Ameloblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína Forkhead Box O1/metabolismo , Línea Celular , Ratones , Fluoruro de Sodio/toxicidad , Fluorosis Dental
12.
J Hazard Mater ; 465: 133455, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38211521

RESUMEN

Microplastics (MPs) commonly coexist with other contaminants and alter their toxicity. Perfluorooctanoic acid (PFOA), an emerging pollutant, may interact with MPs but remain largely unknown about the joint toxicity of PFOA and MPs. Hence, this research explored the single and joint effects of PFOA and polystyrene microplastics (PS-MPs) on microalgae (Chlorella sorokiniana) at the cellular and molecular levels. Results demonstrated that PS-MPs increased PFOA bioavailability by altering cell membrane permeability, thus aggravating biotoxicity (synergistic effect). Meanwhile, the defense mechanisms (antioxidant system modulation and extracellular polymeric substances secretion) of Chlorella sorokiniana were activated to alleviate toxicity. Additionally, transcriptomic analysis illustrated that co-exposure had more differential expression genes (DEGs; 4379 DEGs) than single-exposure (PFOA: 2533 DEGs; PS-MPs: 492 DEGs), which were mainly distributed in the GO terms associated with the membrane composition and antioxidant system. The molecular regulatory network further revealed that PS-MPs and PFOA primarily regulated the response mechanisms of Chlorella sorokiniana by altering the ribosome biogenesis, photosynthesis, citrate cycle, oxidative stress, and antioxidant system (antioxidant enzyme, glutathione-ascorbate cycle). These findings elucidated that PS-MPs enhanced the effect of PFOA, providing new insights into the influences of MPs and PFOA on algae and the risk assessment of multiple contaminants. ENVIRONMENTAL IMPLICATION: MPs and PFAS, emerging contaminants, are difficult to degrade and pose a non-negligible threat to organisms. Co-pollution of MPs and PFAS is ubiquitous in the aquatic environment, while risks of co-existence to organisms remain unknown. The present study revealed the toxicity and defense mechanisms of microalgae exposure to PS-MPs and PFOA from cellular and molecular levels. According to biochemical and transcriptomic analyses, PS-MPs increased PFOA bioavailability and enhanced the effect of PFOA on Chlorella sorokiniana, showing a synergistic effect. This research provides a basis for assessing the eco-environmental risks of MPs and PFAS.


Asunto(s)
Caprilatos , Chlorella , Fluorocarburos , Microalgas , Contaminantes Químicos del Agua , Microplásticos/toxicidad , Poliestirenos/toxicidad , Plásticos/metabolismo , Antioxidantes/metabolismo , Contaminantes Químicos del Agua/toxicidad , Fluorocarburos/metabolismo , Microalgas/metabolismo
13.
Carbohydr Polym ; 334: 122066, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38553206

RESUMEN

Most current flexible electronic devices are based on petroleum materials that are difficult to degrade. The exploration of sustainable and eco-friendly materials has become a major focus in both the scientific and industrial communities. In this study, BC-Zn-BIM (bacterial cellulose-Zn-benzimidazole), a novel composite electrode material based on biodegradable BC was developed. Here, BC acted as a conductive medium involved in the conductive behavior of the composite material. We've explored the charge transport mechanisms of BC-Zn-BIM by density functional theory (DFT) calculations, and applied it in the electrochemical detection of Bisphenol A (BPA). The results indicated that the oxygen-containing groups in BC and the nitrogen-containing heterocycles in BIM have a tendency to lose electrons, whereas zinc ions actively acquire electrons from these groups. This process promoted charge transfer within BC-Zn-BIM and endowed it with semiconductor-like properties, enhancing the electrocatalytic reaction of BPA. The detection limit of the electrochemical biosensor was 12 nM, and the sample recovery was 95.1%105.6%. This study clarified the mechanism of the higher electrical properties achieved in Zn-BIM complex grown in-situ on dielectric BC. This will further promote the development of low-cost, environmentally friendly flexible electronic devices.


Asunto(s)
Celulosa , Zinc , Celulosa/química , Bacterias
14.
Colloids Surf B Biointerfaces ; 238: 113892, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581834

RESUMEN

Receptor and ligand binding mediated targeted drug delivery systems (DDS) sometimes fail to target to tumor sites, and cancer cell membrane (CCM) coating can overcome the dilemma of immune clearance and nonspecific binding of DDS in vivo. In order to enhance the targeting ability and improve the anti-tumor effect, a dual targeting DDS was established based on U87MG CCM mediated homologous targeting and cyclic peptide RGD mediated active targeting. The DDS was prepared by coating RGD doped CCM onto doxorubicin (DOX) loaded liposomes. The homologous and active dual targeting ability endowed the DDS (RGD-CCM-LP-DOX) exhibited superior cancer cell affinity, improved tissue distribution and enhanced anti-tumor effects. In vivo pharmacodynamic studies revealed that RGD-CCM-LP-DOX exhibited superior therapeutic effect compared with homologous targeting CCM-LP-DOX and non-targetable LP-DOX injection. H&E staining, Ki 67 staining and TUNEL staining confirmed that RGD-CCM-LP-DOX not only increased anti-tumor efficacy, but also reduced tissue toxicity by changing the distribution in vivo. The experimental results showed that the RGD doped CCM camouflaged liposome DDS is a better choice for chemotherapeutics delivery.


Asunto(s)
Membrana Celular , Doxorrubicina , Sistemas de Liberación de Medicamentos , Liposomas , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Liposomas/química , Animales , Humanos , Ratones , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/química , Oligopéptidos/química , Ratones Endogámicos BALB C , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Ratones Desnudos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Distribución Tisular , Ensayos de Selección de Medicamentos Antitumorales
15.
Int J Nanomedicine ; 19: 7831-7850, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105099

RESUMEN

Purpose: Compared with traditional photothermal therapy (PTT, >50°C), mild PTT (≤45°C) is a promising strategy for tumor therapy with fewer adverse effects. Unfortunately, its anti-tumor efficacy is hampered by thermoresistance induced by overexpression of heat shock proteins (HSPs). In our previous study, we found bufalin (BU) is a glycolysis inhibitor that depletes HSPs, which is expected to overcome thermotolerance of tumor cells. In this study, BU-loaded multifunctional nanoparticles (NPs) were developed for enhancing the mild PTT of colorectal cancer (CRC). Methods: Fe3O4 NPs coated with the polydopamine (PDA) shell modified with polyethylene glycol (PEG) and cyclic arginine-glycyl-aspartic peptide (cRGD) for loading BU (Fe3O4@PDA-PEG-cRGD/BU NPs) were developed. The thermal variations in Fe3O4@PDA-PEG-cRGD/BU NPs solution under different conditions were measured. Glycolysis inhibition was evaluated by measuring the glucose uptake, extracellular lactate, and intracellular adenosine triphosphate (ATP) levels. The cellular cytotoxicity of Fe3O4@PDA-PEG-cRGD/BU NPs was analyzed using a cell counting kit-8 assay, Calcein-AM/PI double staining, and flow cytometry in HCT116 cells. The magnetic resonance imaging (MRI) performance and anti-tumor therapeutic efficacy of Fe3O4@PDA-PEG-cRGD/BU NPs were evaluated in HCT116-tumor bearing mice. Results: Fe3O4@PDA-PEG-cRGD/BU NPs had an average diameter of 260.4±3.5 nm, the zeta potential of -23.8±1.6 mV, the drug loading rate of 1.1%, which had good thermal stability, photothermal conversion efficiencies and MRI performance. In addition, the released BU not only killed tumor cells but also interfered with glycolysis by targeting the steroid receptor coactivator 3 (SRC-3)/HIF-1α pathway, preventing intracellular ATP synthesis, and combating HSP-dependent tumor thermoresistance, ultimately strengthening the thermal sensitivity toward mild PTT both in vitro and in vivo. Conclusion: This study provides a highly effective strategy for enhancing the therapeutic effects of mild PTT toward tumors.


Asunto(s)
Bufanólidos , Neoplasias Colorrectales , Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Terapia Fototérmica , Animales , Bufanólidos/farmacología , Bufanólidos/química , Bufanólidos/farmacocinética , Humanos , Glucólisis/efectos de los fármacos , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Terapia Fototérmica/métodos , Ratones , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Indoles/química , Indoles/farmacología , Polietilenglicoles/química , Polímeros/química , Ratones Endogámicos BALB C , Línea Celular Tumoral , Ratones Desnudos , Células HCT116 , Nanopartículas de Magnetita/química , Nanopartículas/química , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Dent Mater J ; 43(3): 346-358, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583998

RESUMEN

Conventional resin-based sealants release minimal fluoride ions (F) and lack antibacterial activity. The objectives of this study were to: (1) develop a novel bioactive sealant containing calcium fluoride nanoparticles (nCaF2) and antibacterial dimethylaminohexadecyl methacrylate (DMAHDM), and (2) investigate mechanical performance, F recharge and re-release, microleakage, sealing ability and cytotoxicity. Helioseal F served as commercial control. The initial F release from sealant containing 20% nCaF2 was 25-fold that of Helioseal F. After ion exhaustion and recharge, the F re-release from bioactive sealant did not decrease with increasing number of recharge and re-release cycles. Elastic modulus of new bioactive sealant was 44% higher than Helioseal F. The new sealant had excellent sealing, minimal microleakage, and good cytocompatibility. Hence, the nanostructured sealant had substantial and sustained F release and antibacterial activity, good sealing ability and biocompatibility. The novel bioactive nCaF2 sealant is promising to provide long-term F ions for caries prevention.


Asunto(s)
Antibacterianos , Fluoruro de Calcio , Filtración Dental , Ensayo de Materiales , Metacrilatos , Nanopartículas , Selladores de Fosas y Fisuras , Selladores de Fosas y Fisuras/química , Antibacterianos/farmacología , Antibacterianos/química , Fluoruro de Calcio/química , Metacrilatos/química , Nanopartículas/química , Fluoruros/química , Fluoruros/farmacología , Módulo de Elasticidad , Animales , Ratones , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Propiedades de Superficie , Resinas Compuestas
17.
Drug Deliv Transl Res ; 14(7): 1810-1819, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38236507

RESUMEN

Analgesic creams find widespread application as adjuncts for localized anesthesia prior to surgical procedures. Nevertheless, the onset of analgesic action is protracted due to the skin barrier's inherent characteristics, which necessitates prolonged intervals of patient and clinician waiting, consequently impinging upon patient compliance and clinician workflow efficiency. In this work, a biodegradable microneedles (MNs) patch was introduced to enhance the intradermal administration of lidocaine cream to achieve rapid analgesia through a minimally invasive and conveniently accessible modality. The polylactic acid (PLA) MNs were mass-produced using a simple hot-pressing method and served the purpose of creating microchannels across the skin's surface for rapid absorption of lidocaine cream. Optical and electron microscopes were applied to meticulously scrutinize the morphology of the fabricated MNs, and the comprehensive penetration tests involving dynamometer tests, evaluation on porcine cadaver skin, artificial film, optical coherence tomography (OCT), transepidermal water loss, and analysis on rats' skins, demonstrated the robust mechanical strength of PLA MNs for successful intradermal penetration. The behavioral pain sensitivity tests on living rats using Von Frey hair filaments revealed that the MN-assisted lidocaine treatment expeditiously accelerated the onset of action from 40 to 10 min and substantially enhanced the efficacy of localized anesthesia. Furthermore, different treatment protocols encompassing the sequence of drug application relative to MN treatment, MN dimensions, and the frequency of MN insertions exhibited noteworthy influence on the resultant local anesthesia efficacy. Together, these results demonstrated that the lidocaine cream followed by diverse PLA MN treatments would be a promising strategy for rapid clinical local anesthesia with wide-ranging applications.


Asunto(s)
Anestésicos Locales , Lidocaína , Agujas , Poliésteres , Piel , Animales , Lidocaína/administración & dosificación , Anestésicos Locales/administración & dosificación , Porcinos , Poliésteres/química , Poliésteres/administración & dosificación , Piel/metabolismo , Piel/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Masculino , Parche Transdérmico , Administración Cutánea , Dolor/tratamiento farmacológico , Microinyecciones , Absorción Cutánea , Sistemas de Liberación de Medicamentos/instrumentación
18.
Int J Biol Macromol ; 267(Pt 1): 131436, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593897

RESUMEN

Block polymer micelles have been proven highly biocompatible and effective in improving drug utilization for delivering atorvastatin calcium. Therefore, it is of great significance to measure the stability of drug-loading nano micelles from the perspective of block polymer molecular sequence design, which would provide theoretical guidance for subsequent clinical applications. This study aims to investigate the structural stability of drug-loading micelles formed by two diblock/triblock polymers with various block sequences through coarse-grained dissipative particle dynamics (DPD) simulations. From the perspectives of the binding strength of poly(L-lactic acid) (PLLA) and polyethylene glycol (PEG) in nanoparticles, hydrophilic bead surface coverage, and the morphological alteration of nanoparticles induced by shear force, the ratio of hydrophilic/hydrophobic sequence length has been observed to affect the stability of nanoparticles. We have found that for diblock polymers, PEG3kda-PLLA2kda has the best stability (corresponding hydrophilic coverage ratio is 0.832), while PEG4kda-PLLA5kda has the worst (coverage ratio 0.578). For triblock polymers, PEG4kda-PLLA2kda-PEG4kda has the best stability (0.838), while PEG4kda-PLLA5kda-PEG4kda possesses the worst performance (0.731), and the average performance on stability is better than nanoparticles composed of diblock polymers.


Asunto(s)
Atorvastatina , Interacciones Hidrofóbicas e Hidrofílicas , Lactatos , Nanopartículas , Polietilenglicoles , Atorvastatina/química , Polietilenglicoles/química , Nanopartículas/química , Portadores de Fármacos/química , Micelas , Poliésteres/química , Composición de Medicamentos , Simulación de Dinámica Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA