Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 141(20): 8158-8170, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31053030

RESUMEN

In the present study, we report the development of magnetic-plasmonic bilayer vesicles assembled from iron oxide-gold Janus nanoparticles (Fe3O4-Au JNPs) for reactive oxygen species (ROS) enhanced chemotherapy. The amphiphilic Fe3O4-Au JNPs were grafted with poly(ethylene glycol) (PEG) on the Au surface and ROS-generating poly(lipid hydroperoxide) (PLHP) on the Fe3O4 surface, respectively, which were then assembled into vesicles containing two closely attached Fe3O4-Au NPs layers in opposite directions. The self-assembly mechanism of the bilayered vesicles was elucidated by performing a series of numerical simulations. The enhanced optical properties of the bilayered vesicles were verified by the calculated results and experimental data. The vesicles exhibited enhanced T2 relaxivity and photoacoustic properties over single JNPs due to the interparticle magnetic dipole interaction and plasmonic coupling. In particular, the vesicles are pH responsive and disassemble into single JNPs in the acidic tumor environment, activating an intracellular biochemical reaction between the grafted PLHP and released ferrous ions (Fe2+) from Fe3O4 NPs, resulting in highly efficient local ROS generation and increased intracellular oxidative stress. In combination with the release of doxorubicin (DOX), the vesicles combine ROS-mediated cytotoxicity and DOX-induced chemotherapy, leading to greatly improved therapeutic efficacy than monotherapies. High tumor accumulation efficiency and fast vesicle clearance from the body were also confirmed by positron emission tomography (PET) imaging of radioisotope 64Cu-labeled vesicles.


Asunto(s)
Antineoplásicos/uso terapéutico , Doxorrubicina/uso terapéutico , Portadores de Fármacos/química , Nanopartículas de Magnetita/uso terapéutico , Neoplasias/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Antineoplásicos/farmacocinética , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Doxorrubicina/farmacocinética , Liberación de Fármacos , Sinergismo Farmacológico , Oro/química , Humanos , Concentración de Iones de Hidrógeno , Peróxidos Lipídicos/química , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química , Técnicas Fotoacústicas/métodos , Polietilenglicoles/química , Pirenos/química , Oxígeno Singlete/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
J Comput Chem ; 34(25): 2197-211, 2013 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-24137668

RESUMEN

GALAMOST [graphics processing unit (GPU)-accelerated large-scale molecular simulation toolkit] is a molecular simulation package designed to utilize the computational power of GPUs. Besides the common features of molecular dynamics (MD) packages, it is developed specially for the studies of self-assembly, phase transition, and other properties of polymeric systems at mesoscopic scale by using some lately developed simulation techniques. To accelerate the simulations, GALAMOST contains a hybrid particle-field MD technique where particle­particle interactions are replaced by interactions of particles with density fields. Moreover, the numerical potential obtained by bottom-up coarse-graining methods can be implemented in simulations with GALAMOST. By combining these force fields and particle-density coupling method in GALAMOST, the simulations for polymers can be performed with very large system sizes over long simulation time. In addition, GALAMOST encompasses two specific models, that is, a soft anisotropic particle model and a chain-growth polymerization model, by which the hierarchical self-assembly of soft anisotropic particles and the problems related to polymerization can be studied, respectively. The optimized algorithms implemented on the GPU, package characteristics, and benchmarks of GALAMOST are reported in detail.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Gráficos por Computador , Simulación de Dinámica Molecular/normas , Modelos Moleculares , Tamaño de la Partícula , Polímeros/química
3.
ACS Nano ; 14(4): 3991-4006, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32208667

RESUMEN

We developed dual biologically responsive nanogapped gold nanoparticle vesicles loaded with immune inhibitor and carrying an anticancer polymeric prodrug for synergistic concurrent chemo-immunotherapy against primary and metastatic tumors, along with guided cargo release by photoacoustic (PA) imaging in the second near-infrared (NIR-II) window. The responsive vesicle was prepared by self-assembly of nanogapped gold nanoparticles (AuNNPs) grafted with poly(ethylene glycol) (PEG) and dual pH/GSH-responsive polyprodug poly(SN38-co-4-vinylpyridine) (termed AuNNP@PEG/PSN38VP), showing intense PA signal in the NIR-II window. The effect of the rigidity of hydrophobic polymer PSN38VP on the assembled structures and the formation mechanism of AuNNP@SN38 Ve were elucidated by computational simulations. The immune inhibitor BLZ-945 was encapsulated into the vesicles, resulting in pH-responsive release of BLZ-945 for targeted immunotherapy, followed by the dissociation of the vesicles into single AuNNP@PEG/PSN38VP. The hydrophilic AuNNP@PEG/PSN38VP nanoparticles could penetrate deep into the tumor tissues and release the anticancer drug SN38 under the reductive environment. A PA signal in the NIR-II window in the deep tumor region was obtained. The BLZ-945-loaded vesicle enabled enhanced PA imaging-guided concurrent chemo-immunotherapy efficacy, inhibiting the growth of both primary tumors and metastatic tumors.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Técnicas Fotoacústicas , Oro , Inmunoterapia , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA