Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Microb Cell Fact ; 17(1): 102, 2018 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-29970091

RESUMEN

BACKGROUND: High production cost of bioplastics polyhydroxyalkanoates (PHA) is a major obstacle to replace traditional petro-based plastics. To address the challenges, strategies towards upstream metabolic engineering and downstream fermentation optimizations have been continuously pursued. Given that the feedstocks especially carbon sources account up to a large portion of the production cost, it is of great importance to explore low cost substrates to manufacture PHA economically. RESULTS: Escherichia coli was metabolically engineered to synthesize poly-3-hydroxybutyrate (P3HB), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) using acetate as a main carbon source. Overexpression of phosphotransacetylase/acetate kinase pathway was shown to be an effective strategy for improving acetate assimilation and biopolymer production. The recombinant strain overexpressing phosphotransacetylase/acetate kinase and P3HB synthesis operon produced 1.27 g/L P3HB when grown on minimal medium supplemented with 10 g/L yeast extract and 5 g/L acetate in shake flask cultures. Further introduction succinate semialdehyde dehydrogenase, 4-hydroxybutyrate dehydrogenase, and CoA transferase lead to the accumulation of P3HB4HB, reaching a titer of 1.71 g/L with a 4-hydroxybutyrate monomer content of 5.79 mol%. When 1 g/L of α-ketoglutarate or citrate was added to the medium, P3HB4HB titer increased to 1.99 and 2.15 g/L, respectively. To achieve PHBV synthesis, acetate and propionate were simultaneously supplied and propionyl-CoA transferase was overexpressed to provide 3-hydroxyvalerate precursor. The resulting strain produced 0.33 g/L PHBV with a 3-hydroxyvalerate monomer content of 6.58 mol%. Further overexpression of propionate permease improved PHBV titer and 3-hydroxyvalerate monomer content to 1.09 g/L and 10.37 mol%, respectively. CONCLUSIONS: The application of acetate as carbon source for microbial fermentation could reduce the consumption of food and agro-based renewable bioresources for biorefineries. Our proposed metabolic engineering strategies illustrate the feasibility for producing polyhydroxyalkanoates using acetate as a main carbon source. Overall, as an abundant and renewable resource, acetate would be developed into a cost-effective feedstock to achieve low cost production of chemicals, materials, and biofuels.


Asunto(s)
Acetatos/metabolismo , Escherichia coli/metabolismo , Ingeniería Metabólica , Polihidroxialcanoatos/biosíntesis , Ácido 3-Hidroxibutírico/biosíntesis , Acetato Quinasa/genética , Técnicas de Cultivo Celular por Lotes , Biopolímeros/biosíntesis , Carbono/metabolismo , Escherichia coli/genética , Fermentación , Fosfato Acetiltransferasa/genética , Plásticos
2.
J Ind Microbiol Biotechnol ; 44(4-5): 605-612, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27826725

RESUMEN

Strains of Yarrowia lipolytica were engineered to express the poly-3-hydroxybutyrate (PHB) biosynthetic pathway. The genes for ß-ketothiolase, NADPH-dependent acetoacetyl-CoA reductase, and PHB synthase were cloned and inserted into the chromosome of Y. lipolytica. In shake flasks, the engineered strain accumulated PHB to 1.50 and 3.84% of cell dry weight in complex medium supplemented with glucose and acetate as carbon source, respectively. In fed-batch fermentation using acetate as sole carbon source, 7.35 g/l PHB (10.2% of cell dry weight) was produced. Selection of Y. lipolytica as host for PHB synthesis was motivated by the fact that this organism is a good lipids producer, which suggests robust acetyl-CoA supply also the precursor of the PHB pathway. Acetic acid could be supplied by gas fermentation, anaerobic digestion, and other low-cost supply route.


Asunto(s)
Ingeniería Genética , Hidroxibutiratos/metabolismo , Microbiología Industrial , Poliésteres/metabolismo , Yarrowia/genética , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Reactores Biológicos , Vías Biosintéticas , Ingeniería Celular , Medios de Cultivo/química , Fermentación , NADP/genética , NADP/metabolismo , ARN de Hongos/genética , Yarrowia/metabolismo
3.
Metab Eng ; 35: 1-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26778413

RESUMEN

Metabolically engineered Escherichia coli strains were constructed to effectively produce novel glycolate-containing biopolymers from glucose. First, the glyoxylate bypass pathway and glyoxylate reductase were engineered such as to generate glycolate. Second, glycolate and lactate were activated by the Megasphaera elsdenii propionyl-CoA transferase to synthesize glycolyl-CoA and lactyl-CoA, respectively. Third, ß-ketothiolase and acetoacetyl-CoA reductase from Ralstonia eutropha were introduced to synthesize 3-hydroxybutyryl-CoA from acetyl-CoA. At last, the Ser325Thr/Gln481Lys mutant of polyhydroxyalkanoate (PHA) synthase from Pseudomonas sp. 61-3 was over-expressed to polymerize glycolyl-CoA, lactyl-CoA and 3-hydroxybutyryl-CoA to produce poly(glycolate-co-lactate-co-3-hydroxybutyrate). The recombinant E. coli was able to accumulate the novel terpolymer with a titer of 3.90g/l in shake flask cultures. The structure of the resulting polymer was chemically characterized by proton NMR analysis. Assessment of thermal and mechanical properties demonstrated that the produced terpolymer possessed decreased crystallinity and improved toughness, in comparison to poly(3-hydroxybutyrate) homopolymer. This is the first study reporting efficient microbial production of poly(glycolate-co-lactate-co-3-hydroxybutyrate) from glucose.


Asunto(s)
Escherichia coli , Glucosa , Ingeniería Metabólica , Poliésteres/metabolismo , Cupriavidus necator/enzimología , Cupriavidus necator/genética , Escherichia coli/enzimología , Escherichia coli/genética , Glucosa/genética , Glucosa/metabolismo , Megasphaera elsdenii/enzimología , Megasphaera elsdenii/genética , Pseudomonas/enzimología , Pseudomonas/genética
4.
Biotechnol Lett ; 37(6): 1273-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25724717

RESUMEN

OBJECTIVES: With the help of attB-attP recombination technique, multiple copies of yfjB gene encoding the NAD kinase of Escherichia coli were inserted into the host chromosome to promote NADPH-dependent poly-3-hydroxybutyrate (PHB) production. RESULTS: The yfjB integration mutant E. coli T2 harbored a similar metabolic profile to that of the wild type control. When PHB biosynthesis operon was introduced, the yfjB integration mutant produced 3 g PHB l(-1) from 18.2 g glucose l(-1), while the wild type consumed 15.7 g glucose l(-1) to afford 2.34 g PHB l(-1) in 48 h of shake-flask cultivation. Transcriptional analysis showed that the transcription levels of genes within the PHB biosynthesis operon were increased by six to eightfold with yfj Bover-expression, which may be the primary reason for the improved PHB production. CONCLUSION: A practical method is demonstrated to construct genetically-stable strains harboring extra copies of NAD kinase to enhance NADPH-dependent reactions.


Asunto(s)
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Genoma Bacteriano , Hidroxibutiratos/metabolismo , Ingeniería Metabólica/métodos , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Poliésteres/metabolismo , Vías Biosintéticas/genética , Perfilación de la Expresión Génica , Técnicas de Sustitución del Gen , Glucosa/metabolismo , NADP/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Tiempo , Transcripción Genética
5.
Int J Biol Macromol ; 261(Pt 2): 129838, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38307428

RESUMEN

A novel α-amylase Amy03713 was screened and cloned from the starch utilization strain Vibrio alginolyticus LHF01. When heterologously expressed in Escherichia coli, Amy03713 exhibited the highest enzyme activity at 45 °C and pH 7, maintained >50 % of the enzyme activity in the range of 25-75 °C and pH 5-9, and sustained >80 % of the enzyme activity in 25 % (w/v) of NaCl solution, thus showing a wide range of adapted temperatures, pH, and salt concentrations. Halomonas bluephagenesis harboring amy03713 gene was able to directly utilize starch. With optimized amylase expression, H. bluephagenesis could produce poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB). When cultured for PHB production, recombinant H. bluephagenesis was able to grow up to a cell dry weight of 11.26 g/L, achieving a PHB titer of 6.32 g/L, which is the highest titer that has been reported for PHB production from starch in shake flasks. This study suggests that Amy03713 is an ideal amylase for PHA production using starch as the carbon source in H. bluephagenesis.


Asunto(s)
Halomonas , Ácidos Pentanoicos , Polihidroxialcanoatos , Halomonas/genética , Halomonas/metabolismo , Carbono/metabolismo , Almidón/metabolismo , Hidroxibutiratos/metabolismo , alfa-Amilasas/genética , alfa-Amilasas/metabolismo , Poliésteres/metabolismo
6.
Int J Biol Macromol ; 221: 1365-1372, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36126806

RESUMEN

Volatile fatty acids (VFAs) derived from biomass are considered to be economical and environmentally friendly feedstocks for microbial fermentation. Converting VFAs to polyhydroxyalkanoate (PHA) could reduce the substrate cost and provide an economically viable route for the commercialization of PHA. The halophilic bacteria Salinivibrio spp. TGB4 and TGB19, newly isolated from salt fields, were found to accumulate poly-3-hydroxybutyrate (PHB) using acetate or butyrate as the substrate. Both strains exhibited considerable cell growth (OD600 of ~8) even at acetate concentration of 100 g/L. In shake flask cultures, TGB4 produced PHB titers of 0.90 and 1.34 g/L, while TGB19 produced PHB titers of 0.25 and 2.53 g/L with acetate and butyrate, respectively. When acetate and butyrate were both applied, PHB production was significantly increased, and the PHB titer of TGB4 and TGB19 reached 6.14 and 6.84 g/L, respectively. After optimizing the culture medium, TGB19 produced 8.42 g/L PHB, corresponding to 88.55 wt% of cell dry weight. During fed-batch cultivation, TGB19 produced a PHB titer of 53.23 g/L. This is the highest reported PHB titer using acetate and butyrate by pure microbial cultures and would provide promising hosts for the industrial production of PHA from VFAs.


Asunto(s)
Polihidroxialcanoatos , Vibrionaceae , Butiratos , Hidroxibutiratos , Poliésteres/metabolismo , Ácidos Grasos Volátiles , Acetatos , Vibrionaceae/metabolismo , Fermentación
7.
Int J Biol Macromol ; 195: 255-263, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34914906

RESUMEN

Several species of novel marine bacteria from the genus Marinobacterium, including M. nitratireducens, M. sediminicola, and M. zhoushanense were found to be capable of producing polyhydroxyalkanoates (PHA) using sugars and volatile fatty acids (VFAs) as the carbon source. M. zhoushanense produced poly-3-hydroxybutytate (PHB) from sucrose, achieving a product titer and PHB content of 2.89 g/L and 64.05 wt%, respectively. By contrast, M. nitratireducens accumulated 3.38 g/L PHB and 66.80 wt% polymer content using butyrate as the substrate. A third species, M. sediminicola showed favorable tolerance to propionate, butyrate, and valerate. The use of 10 g/L valerate yielded 3.37 g/L poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), with a 3-hydroxyvalerate (3 HV) monomer content of 94.75 mol%. Moreover, M. sediminicola could be manipulated to produce PHBV with changeable polymer compositions by feeding different mixtures of VFAs. Our results indicate that M. sediminicola is a promising halophilic bacterium for the production of PHA.


Asunto(s)
Ácido 3-Hidroxibutírico/biosíntesis , Oceanospirillaceae/metabolismo , Polihidroxialcanoatos/biosíntesis , Ácido 3-Hidroxibutírico/metabolismo , Butiratos , Carbono , Ácidos Grasos Volátiles/metabolismo , Hidroxibutiratos , Poliésteres/química , Polihidroxialcanoatos/metabolismo , Propionatos , Azúcares/metabolismo , Valeratos
8.
Int J Biol Macromol ; 186: 574-579, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34245739

RESUMEN

A moderately halophilic bacterium isolated from the water samples collected from a salt field, Salinivibrio sp. TGB10 was found capable of producing poly-3-hydroxybutytate (PHB) from various sugars. Cell dry weight (CDW) of 8.82 g/L and PHB titer of 6.84 g/L were obtained using glucose as the carbon source after 24 h of cultivation in shake flasks. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was synthesized when propionate was provided as secondary carbon source. Salinivibrio sp. TGB10 exhibited favorable tolerance to propionate. The use of 8 g/L propionate and 20 g/L glucose as combinational substrates yielded 1.45 g/L PHBV with a 3-hydroxyvalerate monomer content of 72.02 mol% in flask cultures. In bioreactor study, CDW of 33.45 g/L and PHBV titer of 27.36 g/L were obtained after 108 h of fed-batch cultivation. The results indicated that Salinivibrio sp. TGB10 is a promising halophilic bacterium for the production of PHBV with various polymer compositions.


Asunto(s)
Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Polihidroxialcanoatos/metabolismo , Vibrionaceae/enzimología , Reactores Biológicos , Ácidos Grasos Volátiles/metabolismo , Fermentación , Especificidad por Sustrato , Azúcares/metabolismo , Vibrionaceae/crecimiento & desarrollo , Microbiología del Agua
9.
Metab Eng ; 12(4): 352-9, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20304089

RESUMEN

A metabolically engineered Escherichia coli has been constructed for the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from unrelated carbon sources. Genes involved in succinate degradation in Clostridium kluyveri and P(3HB) accumulation pathway of Ralstonia eutropha were co-expressed for the synthesis of the above copolyester. E. coli native succinate semialdehyde dehydrogenase genes sad and gabD were both deleted for eliminating succinate formation from succinate semialdehyde, which functioned to enhance the carbon flux to 4HB biosynthesis. The metabolically engineered E. coli produced 9.4 gl(-1) cell dry weight containing 65.5% P(3HB-co-11.1 mol% 4HB) using glucose as carbon source in a 48 h shake flask growth. The presence of 1.5-2 gl(-1) alpha-ketoglutarate or 1.0 gl(-1) citrate enhanced the 4HB monomer content from 11.1% to more than 20%. In a 6l fermentor study, a 23.5 gl(-1) cell dry weight containing 62.7% P(3HB-co-12.5 mol% 4HB) was obtained after 29 h of cultivation. To the best of our knowledge, this study reports the highest 4HB monomer content in P(3HB-co-4HB) produced from unrelated carbon sources.


Asunto(s)
Carbono/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Hidroxibutiratos/metabolismo , Redes y Vías Metabólicas/genética , Poliésteres/metabolismo , Ácido Cítrico/metabolismo , Clostridium kluyveri/enzimología , Clostridium kluyveri/genética , Cupriavidus necator/enzimología , Cupriavidus necator/genética , Fermentación , Ingeniería Genética , Glucosa/metabolismo , Ácidos Cetoglutáricos/metabolismo , Eliminación de Secuencia , Succionato-Semialdehído Deshidrogenasa/genética , Ácido Succínico/metabolismo
10.
Appl Microbiol Biotechnol ; 83(5): 939-47, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19357844

RESUMEN

NAD kinase was overexpressed to enhance the accumulation of poly(3-hydroxybutyrate) (PHB) in recombinant Escherichia coli harboring PHB synthesis pathway via an accelerated supply of NADPH, which is one of the most crucial factors influencing PHB production. A high copy number expression plasmid pE76 led to a stronger NAD kinase activity than that brought about by the low copy number plasmid pELRY. Overexpressing NAD kinase in recombinant E. coli was found not to have a negative effect on cell growth in the absence of PHB synthesis. Shake flask experiments demonstrated that excess NAD kinase in E. coli harboring the PHB synthesis operon could increase the accumulation of PHB to 16-35 wt.% compared with the controls; meanwhile, NADP concentration was enhanced threefold to sixfold. Although the two NAD kinase overexpression recombinants exhibited large disparity on NAD kinase activity, their influence on cell growth and PHB accumulation was not proportional. Under the same growth conditions without process optimization, the NAD kinase-overexpressing recombinant produced 14 g/L PHB compared with 7 g/L produced by the control in a 28-h fermentor study. In addition, substrate to PHB yield Y (PHB/glucose) showed an increase from 0.08 g PHB/g glucose for the control to 0.15 g PHB/g glucose for the NAD kinase-overexpressing strain, a 76% increase for the Y (PHB/glucose). These results clearly showed that the overexpression of NAD kinase could be used to enhance the PHB synthesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Expresión Génica , Hidroxibutiratos/metabolismo , Operón , Fosfotransferasas/metabolismo , Poliésteres/metabolismo , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , NADP/metabolismo , Fosfotransferasas/genética
11.
J Biosci Bioeng ; 122(6): 685-688, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27353858

RESUMEN

The cofactor NADPH participates in a variety of anabolic reactions and its availability is considered to play a critical role in biotransformation processes. NADH kinase (Pos5) from Saccharomyces cerevisiae catalyzes the phosphorylation of NADH to generate NADPH. To investigate the effect of NADH kinase on poly-3-hydroxybutyrate (PHB) production, pos5 was co-expressed with PHB synthetic operon phbCAB in Escherichia coli. The recombinant strain carrying pos5 and phbCAB co-expression plasmid reached 5.96 g/L cell dry weight with 64.1% PHB accumulation in 72 h shake flask cultivation, while the control strain without pos5 yielded 3.93 g/L cell dry weight with 58.5% PHB content. PHB production titer was enhanced from 2.30 g/L to 3.82 g/L. Intracellular cofactor concentration analysis revealed that the ratio of NADP/NAD in pos5 overexpression strain was two times more compared with that of the control without pos5. The results showed that NADH kinase could be employed as an effective metabolic manipulation target to improve PHB synthesis.


Asunto(s)
Hidroxibutiratos/metabolismo , Proteínas Mitocondriales/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Poliésteres/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Mitocondriales/genética , NAD/metabolismo , NADP/metabolismo , Organismos Modificados Genéticamente , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Biomed Res Int ; 2015: 789315, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25945345

RESUMEN

The alcohol dehydrogenase promoter PadhE and mixed acid fermentation pathway deficient mutants of Escherichia coli were employed to produce poly(3-hydroxybutyrate) (P3HB) under microaerobic condition. The E. coli mutant with ackA-pta, poxB, ldhA, and adhE deletions accumulated 0.67 g/L P3HB, up to 78.84% of cell dry weight in tube cultivation. The deletion of pyruvate formate-lyase gene pflB drastically decreased P3HB production and P3HB content to 0.09 g/L and 24.44%, respectively. Overexpressing pflB via the plasmid in its knocked out mutant restored cell growth and P3HB accumulation, indicating the importance of the pyruvate formate-lyase in microaerobic carbon metabolism. The engineered E. coli BWapld (pWYC09) produced 5.00 g/L P3HB from 16.50 g/L glucose in 24 h batch fermentation, and P3HB production yield from glucose was 0.30 g/g, which reached up to 63% of maximal theoretical yield.


Asunto(s)
Proteínas de Escherichia coli/biosíntesis , Escherichia coli/genética , Hidroxibutiratos/metabolismo , Ingeniería Metabólica , Poliésteres/metabolismo , Aerobiosis , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Fermentación , Glucosa/metabolismo , Plásmidos/genética
13.
Prog Mol Biol Transl Sci ; 104: 299-323, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22093222

RESUMEN

Over the past few decades, interest in designing and developing polymeric nanoparticles has undergone considerable explosion. Indeed, these nanoparticulated polymer-based systems provide potential solution to improve therapeutic efficacy and diagnosis sensitivity. In this chapter, general properties, production, and characterization of polymer nanoparticles are introduced. Specifically, the development and application of polyhydroxyalkanoate (PHA)-based nanoparticles are emphasized because of the good biocompatible, biodegradable properties, as well as their mechanical flexibility. These PHAs nanoparticles can serve as targeting drug delivery carriers and protein purification and immobilization matrices. The perspective outlook in the last section highlights the future application of polymer nanoparticles in translational science.


Asunto(s)
Nanopartículas/química , Polímeros/química , Nanopartículas/ultraestructura , Polihidroxialcanoatos/síntesis química , Polihidroxialcanoatos/química , Polímeros/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA