Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Virol J ; 18(1): 255, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930370

RESUMEN

BACKGROUND: Enterovirus 71 (EV71) usually infects infants causing hand-foot-mouth disease (HFMD), even fatal neurological disease like aseptic meningitis. Effective drug for preventing and treating EV71 infection is unavailable currently. EV71 3C mediated the cleavage of many proteins and played an important role in viral inhibiting host innate immunity. Promyelocytic leukemia (PML) protein, the primary organizer of PML nuclear bodies (PML-NBs), can be induced by interferon and is involved in antiviral activity. PML inhibits EV71 replication, and EV71 infection reduces PML expression, but the molecular mechanism is unclear. METHODS: The cleavage of PMLIII and IV was confirmed by co-transfection of EV71 3C protease and PML. The detailed cleavage sites were evaluated further by constructing the Q to A mutant of PML. PML knockout cells were infected with EV71 to identify the effect of cleavage on EV71 replication. Immunofluorescence analysis to examine the interference of EV71 3C on the formation of PML-NBs. RESULTS: EV71 3C directly cleaved PMLIII and IV. Furthermore, 3C cleaved PMLIV at the sites of Q430-A431 and Q444-S445 through its protease activity. Overexpression of PMLIV Q430A/Q444A variant exhibited stronger antiviral potential than the wild type. PMLIV Q430A/Q444A formed normal nuclear bodies that were not affected by 3C, suggesting that 3C may impair PML-NBs production via PMLIV cleavage and counter its antiviral activities. PML, especially PMLIV, which sequesters viral proteins in PML-NBs and inhibits viral production, is a novel target of EV71 3C cleavage. CONCLUSIONS: EV71 3C cleaves PMLIV at Q430-A431 and Q444-S445. Cleavage reduces the antiviral function of PML and decomposes the formation of PML-NBs, which is conducive to virus replication.


Asunto(s)
Enterovirus Humano A , Enterovirus , Proteasas Virales 3C , Péptido Hidrolasas , Proteína de la Leucemia Promielocítica/genética
2.
Biomedicines ; 11(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38137420

RESUMEN

Dental pulp pericytes are reported to have the capacity to generate odontoblasts and express multiple cytokines and chemokines that regulate the local immune microenvironment, thus participating in the repair of dental pulp injury in vivo. However, it has not yet been reported whether the transplantation of exogenous pericytes can effectively treat pulpitis, and the underlying molecular mechanism remains unknown. In this study, using a lineage-tracing mouse model, we showed that most dental pulp pericytes are derived from cranial neural crest. Then, we demonstrated that the ablation of pericytes could induce a pulpitis-like phenotype in uninfected dental pulp in mice, and we showed that the significant loss of pericytes occurs during pupal inflammation, implying that the transplantation of pericytes may help to restore dental pulp homeostasis during pulpitis. Subsequently, we successfully generated pericytes with immunomodulatory activity from human pluripotent stem cells through the intermediate stage of the cranial neural crest with a high level of efficiency. Most strikingly, for the first time we showed that, compared with the untreated pulpitis group, the transplantation of hPSC-derived pericytes could substantially inhibit vascular permeability (the extravascular deposition of fibrinogen, ** p < 0.01), alleviate pulpal inflammation (TCR+ cell infiltration, * p < 0.05), and promote the regeneration of dentin (** p < 0.01) in the mouse model of pulpitis. In addition, we discovered that the knockdown of latent transforming growth factor beta binding protein 1 (LTBP1) remarkably suppressed the immunoregulation ability of pericytes in vitro and compromised their in vivo regenerative potential in pulpitis. These results indicate that the transplantation of pericytes could efficiently rescue the aberrant phenotype of pulpal inflammation, which may be partially due to LTBP1-mediated T cell suppression.

3.
Microbiol Spectr ; 10(1): e0138821, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34985336

RESUMEN

Enterovirus 71 (EV71) is the major pathogen of hand, foot, and mouth disease. In severe cases, it can cause life-threatening neurological complications, such as aseptic meningitis and polio-like paralysis. There are no specific antiviral treatments for EV71 infections. In a previous study, the host protein growth arrest and DNA damage-inducible protein 34 (GADD34) expression was upregulated during EV71 infection determined by ribosome profiling and RNA-sequencing. Here, we investigated the interactions of host protein GADD34 and EV71 during infections. Rhabdomyosarcoma (RD) cells were infected with EV71 resulting in a significant increase in expression of GADD34 mRNA and protein. Through screening of EV71 protein we determined that the non-structural precursor protein 3CD is responsible for upregulating GADD34. EV71 3CD increased the RNA and protein levels of GADD34, while the 3CD mutant Y441S could not. 3CD upregulated GADD34 translation via the upstream open reading frame (uORF) of GADD34 5'untranslated regions (UTR). EV71 replication was attenuated by the knockdown of GADD34. The function of GADD34 to dephosphorylate eIF2α was unrelated to the upregulation of EV71 replication, but the PEST 1, 2, and 3 regions of GADD34 were required. GADD34 promoted the EV71 internal ribosome entry site (IRES) activity through the PEST repeats and affected several other viruses. Finally, GADD34 amino acids 563 to 565 interacted with 3CD, assisting GADD34 to target the EV71 IRES. Our research reveals a new mechanism by which GADD34 promotes viral IRES and how the EV71 non-structural precursor protein 3CD regulates host protein expression to support viral replication. IMPORTANCE Identification of host factors involved in viral replication is an important approach in discovering viral pathogenic mechanisms and identifying potential therapeutic targets. Previously, we screened host proteins that were upregulated by EV71 infection. Here, we report the interaction between the upregulated host protein GADD34 and EV71. EV71 non-structural precursor protein 3CD activates the RNA and protein expression of GADD34. Our study reveals that 3CD regulates the uORF of the 5'-UTR to increase GADD34 translation, providing a new explanation for how viral proteins regulate host protein expression. GADD34 is important for EV71 replication, and the key functional domains of GADD34 that promote EV71 are PEST 1, 2, and 3 regions. We report that GADD34 promotes viral IRES for the first time and this process is independent of its eIF2α phosphatase activity.


Asunto(s)
Enterovirus Humano A/genética , Enterovirus Humano A/metabolismo , Enfermedad de Boca, Mano y Pie/metabolismo , Biosíntesis de Proteínas , Proteína Fosfatasa 1/metabolismo , Proteínas no Estructurales Virales/metabolismo , Regiones no Traducidas 5' , Secuencias de Aminoácidos , Línea Celular , Enterovirus Humano A/química , Enfermedad de Boca, Mano y Pie/genética , Enfermedad de Boca, Mano y Pie/virología , Interacciones Huésped-Patógeno , Humanos , Sitios Internos de Entrada al Ribosoma , Sistemas de Lectura Abierta , Unión Proteica , Proteína Fosfatasa 1/química , Proteína Fosfatasa 1/genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Replicación Viral
4.
Int J Biol Macromol ; 148: 483-492, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31926232

RESUMEN

Redox-responsive theranostic nanoparticles based on poly-(N-ε-carbobenzyloxy-l-lysine) (PZLL) grafted hyaluronan (HA) (HA-g-SS-PZLL) copolymers were constructed for hepatocellular carcinoma diagnosis and therapy. These hyaluronan derivatives formed nanoparticles via a self-assembly process in aqueous solution at low concentration. Theranostic nanoparticles were obtained after loading hydrophobic doxorubicin (DOX) and superparamagnetic iron oxide (SPIO) into the core of the nanoparticles via a dialysis method. Theranostic nanoparticles exhibited redox triggered DOX release behavior, and faster DOX released from theranostic nanoparticles was detected under a reducing environment compared with slow DOX release under a normal physiological environment. Confocal laser scanning microscopy (CLSM), flow cytometry and Prussian blue staining against HepG2 cells demonstrated that HA-g-SS-PZLL theranostic nanoparticles were capable of delivering DOX and SPIO into the cells. The analysis of the anticancer effect revealed that the HA-g-SS-PZLL theranostic nanoparticles shown higher cytotoxicity against HepG2 cells than DOX-loaded HA-g-PZLL nanoparticles. In vitro T2 magnetic resonance imaging (MRI) results exhibited that theranostic nanoparticles showed a good contrast enhancement effect, and the r2 relaxivity value was approximately 231 Fe mM-1 s-1. Finally, the theranostic nanoparticles acted as nanoprobes for HepG2 tumor-bearing BALB/c mice for in vivo MRI. Therefore, HA-g-SS-PZLL copolymers have great potential as theranostic nanoparticles for tumor-targeted diagnosis and treatment.


Asunto(s)
Biopolímeros , Disulfuros , Ácido Hialurónico , Nanopartículas , Oxidación-Reducción , Polilisina , Nanomedicina Teranóstica , Antineoplásicos/administración & dosificación , Biopolímeros/química , Supervivencia Celular , Disulfuros/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Células Hep G2 , Humanos , Ácido Hialurónico/síntesis química , Ácido Hialurónico/química , Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Polilisina/química , Espectroscopía Infrarroja por Transformada de Fourier
5.
Food Chem ; 292: 314-324, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31054680

RESUMEN

Little is known about the variations of fresh fruit biomembrane and its physiological and biochemical characteristics during storage. A navel orange mutant 'Gannan No.1' (Citrus sinensis Osbeck) showed higher membrane stability and titratable acid while lower calyx senescence compared with wild-type 'Newhall'. The membrane damage was significantly reduced in 'Gannan No.1' under 10% polyethylene-glycol (41.16% vs. 8.77%) and 30% polyethylene-glycol (52.59% vs.16.11%) treatments on day 45 after harvest. Consistently, membrane electrolyte leakage and malondialdehyde were significantly decreased in 'Gannan No.1', and superoxide dismutase and glutathione reductase were activated. A metabolic analysis was performed to evaluate membrane fatty acid unsaturation and peroxidation. Linolenic acid and hexadecylenic acid contributed to the higher degree of unsaturated fatty acids in 'Gannan No.1'. Furthermore, 'Gannan No.1' accumulated stress-resistant metabolites such as proline, α-tocopherol and glutathione. Correlation analysis of membrane homeostasis indexes with quality parameters showed the importance of biomembrane stability in maintaining citrus fruit quality.


Asunto(s)
Pared Celular/metabolismo , Citrus sinensis/metabolismo , Ácidos Grasos/metabolismo , Peroxidación de Lípido , Pared Celular/química , Citrus sinensis/química , Citrus sinensis/genética , Almacenamiento de Alimentos , Frutas/química , Frutas/metabolismo , Glutatión Reductasa/metabolismo , Malondialdehído/análisis , Malondialdehído/metabolismo , Potenciales de la Membrana , Mutación , Fenotipo , Proteínas de Plantas/metabolismo , Polietilenglicoles/química , Análisis de Componente Principal , Superóxido Dismutasa/metabolismo
6.
Adv Healthc Mater ; 5(23): 2993-3003, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27709840

RESUMEN

Herein, a robust method to fabricate expanded nanofiber scaffolds with controlled size and thickness using a customized mold during the modified gas-foaming process is reported. The expansion of nanofiber membranes is also simulated using a computational fluid model. Expanded nanofiber scaffolds implanted subcutaneously in rats show cellular infiltration, whereas non-expanded scaffolds only have surface cellular attachment. Compared to unexpanded nanofiber scaffolds, more CD68+ and CD163+ cells are observed within expanded scaffolds at all tested time points post-implantation. More CCR7+ cells appear within expanded scaffolds at week 8 post-implantation. In addition, new blood vessels are present within the expanded scaffolds at week 2. The formed multinucleated giant cells within expanded scaffolds are heterogeneous expressing CD68, CCR7, or CD163 markers. Together, the present study demonstrates that the expanded nanofiber scaffolds promote cellular infiltration/tissue integration, a regenerative response, and neovascularization after subcutaneous implantation in rats. The use of expanded electrospun nanofiber scaffolds offers a promising method for in situ tissue repair/regeneration and generation of 3D tissue models/constructs.


Asunto(s)
Nanofibras/administración & dosificación , Nanofibras/química , Neovascularización Fisiológica/efectos de los fármacos , Andamios del Tejido/química , Animales , Antígenos CD/metabolismo , Materiales Biocompatibles/administración & dosificación , Materiales Biocompatibles/química , Biomarcadores/metabolismo , Células Cultivadas , Membranas/efectos de los fármacos , Membranas/metabolismo , Ratas , Regeneración/efectos de los fármacos , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA