Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(21): 8035-8043, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37200099

RESUMEN

Microplastics (MPs), as a new persistent pollutant, can be emitted and accumulated in urban environments, but there is no detailed information on the driving factors of MP pollution. In this study, through a large-scale wetland soil survey, the features of MPs were characterized in each urban area. The results showed an average abundance to be 379 n/kg in wetland soil. Polypropylene, fiber or fragment, and black color were common composition, shape, and color, respectively. The spatial distribution information showed that MP abundance was significantly relevant to the distance from the urban economic center. Furthermore, the correlation and regression analysis revealed that MP abundance was related to soil heavy metal and atmospheric particle (PM10 and PM2.5) concentrations (P < 0.05), while the promotion of socioeconomic activities (urbanization level, population density, etc.) may aggravate the pollution degree. Additionally, by using structural equation modeling, it was found that the urbanization level was the dominant factor driving the MP pollution degree, with a total effect coefficient of 0.49. Overall, this work provides multi-sided environmental information regarding MP pollution in urban ecosystems, which is significant for follow-up studies of MP pollution control and restoration.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos/análisis , Humedales , Ecosistema , Suelo , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis
2.
Ecotoxicol Environ Saf ; 246: 114194, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36252513

RESUMEN

The potential toxicity of microplastic (MPs) to organisms has attracted extensive attention. However, due to the subacute toxicity of MPs, the biological effect is hard to verify in short-term exposure experiment. Here, by tracking the dynamics of gut microbes, mice model was utilized to evaluate the toxicity of compositional MPs (PE, PET, PP, PS and PVC). After 7 days digestive exposure, the physiological indicators were normal as the control group that the body weight and serum cholesterol levels were insignificant change. Whereas, through histopathological examination, all the treatment groups suffered colon tissue damage, among which PS had the most inflammatory cells. Moreover, the high-throughput sequencing results revealed great variation of intestinal flora in treated mice. The ratio of Bacteroidetes and Firmicutes in PE, PET and PP treatment groups heighten, and the relative abundance of Ruminococcaceae and Lachnospiraceae increased significantly at family levels. At the genus level, Alistipes bacteria in PS treatment group significantly decreased that is associated with obesity risk. It indicated that MPs induced inflammatory response would further interfere the dynamics of intestinal flora causing health effect in living organisms. This work shed light on MPs toxicity in short-term exposure and supplied research paradigm of MPs health risk assessment.


Asunto(s)
Microbioma Gastrointestinal , Microplásticos , Ratones , Animales , Plásticos , Bacterias/genética , Digestión
3.
Int J Biol Macromol ; 236: 123983, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36907307

RESUMEN

This work demonstrated a successful strategy that simple ionic liquids (ILs) mediated pretreatment could effectively reduce crystallinity of cellulose from 71 % to 46 % (by C2MIM.Cl) and 53 % (by C4MIM.Cl). The IL-mediated regeneration of cellulose greatly promoted its reactivity for TEMPO-catalyzed oxidation, which the resulting COO- density (mmol/g) increased from 2.00 for non-IL-treated cellulose to 3.23 (by C2MIM.Cl) and 3.42 (C4MIM.Cl); and degree of oxidation enhanced from 35 % to 59 % and 62 %, respectively. More significantly, the yield of oxidized cellulose increased from 4 % to 45-46 %, by 11-fold. IL-regenerated cellulose can also be directly subjected to alkyl/alkenyl succinylation without TEMPO-mediated oxidation, producing nanoparticles with properties similar to oxidized celluloses (55-74 nm in size, -70-79 mV zeta-potential and 0.23-0.26 PDI); but in a much higher overall yield (87-95 %) than IL-regeneration-coupling-TEMPO-oxidation (34-45 %). Alkyl/alkenyl succinylated TEMPO-oxidized cellulose showed 2-2.5 times higher ABTS* scavenging ability than non-oxidized cellulose; however, alkyl/alkenyl succinylation also resulted in a significant decline in Fe2+ chelating property.


Asunto(s)
Celulosa Oxidada , Líquidos Iónicos , Nanopartículas , Líquidos Iónicos/química , Celulosa/química , Celulosa Oxidada/química , Nanopartículas/química , Oxidación-Reducción
4.
Sci Total Environ ; 856(Pt 1): 159058, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36179836

RESUMEN

The increased emission and accumulation of micro- or nanoplastics (M-NPs) have posed a severely threaten to organisms in the environment. Though the toxicity of M-NPs has been observed in many species, the fundamental factors determining the biotoxicity are rarely expounded on. In this work, typical polystyrene (PS) M-NPs were set up with a multiparameter variation in size gradient, surface charge contrast and concentration variant, and evaluated by the Caenorhabditis elegans (C. elegans) model. From the endpoints of body length, brood size, survival rate and lifespan, an adverse effect was found on the growth and development of C. elegans caused by PSs. In general, the toxicity of PS was found to be concentrated- and size-dependent, with 100 nm positively charged nano-PS having the highest physio-toxicity. Monitoring by fluorescent imaging, it showed that positively charged nano-PS was mainly ingested and accumulated in the intestinal tract of C. elegans. In addition, the penetrated PS induced severe biological stress reactions with the increase of reactive oxygen species (ROS) and lipofuscin. Furthermore, the following expression of antioxidation-related enzymes was activated in vivo as indicated by the GFP-labelled C. elegans. All the results supplied visually toxic parameters of M-NPs to organisms, which sheds light on the biosecurity and ecological risks of M-NPs in the future.


Asunto(s)
Microplásticos , Nanopartículas , Animales , Microplásticos/toxicidad , Caenorhabditis elegans/genética , Edición Génica , Poliestirenos/toxicidad , Colorantes
5.
J Hazard Mater ; 447: 130762, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36638676

RESUMEN

Microplastic threats to biodiversity, health and ecological safety are adding to concern worldwide, but the real impacts on the functioning of organisms and ecosystems are obscure owing to their inert characteristics. Here we investigated the long-lasting ecological effects of six prevalent microplastic types: polyethylene (PE), polypropylene (PP), polyamide (PA), polystyrene (PS), polyethylene terephthalate (PET), and polyvinyl chloride (PVC) on soil bacteria at a 2 % (w/w) level. Due to the inertia and lack of available nitrogen of these microplastics, their effects on bacteriome tended to converge after one year and were strongly different from their short-term effects. The soil volumes around microplastics were very specific, in which the microplastic-adapted bacteria (e.g., some genera in Actinobacteria) were enriched but the phyla Bacteroidetes and Gemmatimonadetes declined, resulting in higher microbial nitrogen requirements and reduced organic carbon mineralization. The reshaped bacteriome was specialized in the genetic potential of xenobiotic and lipid metabolism as well as related oxidation, esterification, and hydrolysis processes, but excessive oxidative damage resulted in severe weakness in community genetic information processing. According to model predictions, microplastic effects are indirectly derived from nutrients and oxidative stress, and the effects on bacterial functions are stronger than on structure, posing a heavy risk to soil ecosystems.


Asunto(s)
Microplásticos , Plásticos , Microplásticos/toxicidad , Plásticos/toxicidad , Ecosistema , Suelo , Polipropilenos , Bacterias/genética
6.
J Hazard Mater ; 418: 126288, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34102358

RESUMEN

Terrestrial ecosystems are widely contaminated by microplastics due to extensive usage and poor handling of plastic materials, but the subsequent fate and remediate strategy of these pollutants are far from fully understood. In soil environments, microplastics pose a potential threat to the survival, growth, and reproduction of soil microbiota that in turn threaten the biodiversity, function, and services of terrestrial ecosystems. Meanwhile, microorganisms are sensitive to microplastics due to the adaptability to changes in substrates and soil properties. Through the metabolic and mineralization processes, microorganisms are also crucial participator to the plastic biodegradation. In this review, we present current knowledges and research results of interactions between microplastics and microorganisms (both fungi and bacteria) in soil environments and mainly discuss the following: (1) effects of microplastics on microbial habitats via changes in soil physical, chemical, and biological properties; (2) effects of microplastics on soil microbial communities and functions; and (3) soil microbial-mediated plastic degradation with the likely mechanisms and potential remediation strategies. We aim to analyze the mechanisms driving these interactions and subsequent ecological effects, propose future directives for the study of microplastic in soils, and provide valuable information on the plastic bioremediation in contaminated soils.


Asunto(s)
Microbiota , Contaminantes del Suelo , Biodegradación Ambiental , Microplásticos , Plásticos/toxicidad , Suelo , Contaminantes del Suelo/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA