Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicology ; 24(10): 2049-53, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26419245

RESUMEN

The aim of this study was to evaluate the biological toxicity of cellulose nanocrystals (CNCs) using the constitutively bioluminescent luxCDABE-based bioreporter Escherichia coli 652T7. The effects of CNCs on E. c oli 652T7 biotoxicity were investigated at different CNC concentrations, reaction times, and IC50 values. CNC toxicity was also compared with and without ultrasonic dispersion to establish dispersibility effects. The results demonstrated that CNCs were not significantly toxic at concentrations at or below 250 mg/L. At concentrations higher than 300 mg/L, toxicity increased linearly as CNC concentrations increased up to 2000 mg/L. IC50 calculations demonstrated an increase in cytotoxicity as CNC exposure times increased, and elevated dispersibility of the CNCs were shown to increase cytotoxicity effects. These results suggest that CNCs can impact microbial populations if elevated concentration thresholds are met.


Asunto(s)
Celulosa/toxicidad , Escherichia coli/efectos de los fármacos , Nanopartículas/toxicidad , Escherichia coli/genética , Proteínas Luminiscentes/análisis , Pruebas de Toxicidad
2.
Biomaterials ; 266: 120432, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33069116

RESUMEN

Gastrointestinal (GI) cancers are among the most lethal malignancies. The treatment of advanced-stage GI cancer involves standard chemotherapeutic drugs, such as docetaxel, as well as targeted therapeutics and immunomodulatory agents, all of which are only moderately effective. We here show that Π electron-stabilized polymeric micelles based on PEG-b-p(HPMAm-Bz) can be loaded highly efficiently with docetaxel (loading capacity up to 23 wt%) and potentiate chemotherapy responses in multiple advanced-stage GI cancer mouse models. Complete cures and full tumor regression were achieved upon intravenously administering micellar docetaxel in subcutaneous gastric cancer cell line-derived xenografts (CDX), as well as in CDX models with intraperitoneal and lung metastases. Nanoformulated docetaxel also outperformed conventional docetaxel in a patient-derived xenograft (PDX) model, doubling the extent of tumor growth inhibition. Furthermore, micellar docetaxel modulated the tumor immune microenvironment in CDX and PDX tumors, increasing the ratio between M1-and M2-like macrophages, and toxicologically, it was found to be very well-tolerated. These findings demonstrate that Π electron-stabilized polymeric micelles loaded with docetaxel hold significant potential for the treatment of advanced-stage GI cancers.


Asunto(s)
Antineoplásicos , Neoplasias Gastrointestinales , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Docetaxel , Portadores de Fármacos , Electrones , Neoplasias Gastrointestinales/tratamiento farmacológico , Ratones , Micelas , Polietilenglicoles , Microambiente Tumoral
3.
Bioresour Technol ; 280: 502-504, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30777701

RESUMEN

For bio-H2 fermentation, the progress and H2 yield were significantly affected by culture pH. Our previous research found peanut shell powder (PSP, as supplementary substrate) having a buffer effect on the fermentative time prolongation and H2 yield enhancement. The acid buffer action (ABA), cation exchange capacity (CEC), scanning electron microscope (SEM) and X-ray powder diffraction (XRD) were employed to explore the mechanism and structure changes of PSP. The superior ABA (57.44 ±â€¯0.65 mmol/pH-kg) and CEC (112 ±â€¯2.0 cmol/kg) of PSP, which provided high specific surface area and amorphous content, prolonged the fermentative time. The acidification of volatile fatty acids on PSP was effective to release reducing sugar and enhance hydrogen yield through breaking hemicellulose and amorphous components of cellulose, and enlarging specific surface area. The results indicated that buffer effect and acidification on PSP made positive effects on prolonging fermentation time and enhancing hydrogen yield.


Asunto(s)
Arachis/metabolismo , Fermentación , Hidrógeno/metabolismo , Ácidos , Arachis/anatomía & histología , Tampones (Química) , Celulosa/metabolismo , Ácidos Grasos Volátiles/química , Ácidos Grasos Volátiles/metabolismo , Concentración de Iones de Hidrógeno , Especificidad por Sustrato
4.
Artif Cells Nanomed Biotechnol ; 47(1): 4211-4221, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31713444

RESUMEN

At present, cancer is the first cause of death for humans, but early detection and treatment can help improve prognoses and reduce mortality. However, further development of carrier-assistant drug delivery systems (DDSs) is retarded by the aspects such as the low drug-carrying capacity, carrier-induced toxicity and immunogenicity, complex synthesis manipulation. The development of nanoscale drug delivery systems (NDDS) have been rapidly developed to address these issues. In this article, we used PLGA-PEG with good biocompatibility to encapsulate Fe3O4 nanoparticles (a magnetic resonance imaging contrast agent) and DOX (an antitumour drug) via the emulsion-solvent evaporation method, aimed at achieving a dual function of the early detection and the treatment of mammary cancer. The results showed that the Fe3O4/DOX/PLGA-PEG nanoparticles had a relatively uniform size, a high carrier rate of Fe3O4 and high encapsulation efficiency of DOX, and a relatively high activity of released DOX within 120 h. In addition, in vitro studies showed that the Fe3O4/DOX/PLGA-PEG nanoparticles were cytocompatibility in NIH 3T3 fibroblast cells culture study while had a special effect on destroying human breast cancer MCF-7 cells compared with pure DOX solution. In vitro studies revealed that the Fe3O4/DOX/PLGA-PEG enabled enhanced T2 contrast magnetic resonance. Overall, our multifunctional Fe3O4/DOX/PLGA-PEG nanoparticles, composed of biocompatible substances and therapeutic/imaging materials, have great potential for the early detection of cancer and accurate drug delivery via the dynamic monitoring using MRI.


Asunto(s)
Materiales Biocompatibles/química , Doxorrubicina/química , Doxorrubicina/uso terapéutico , Portadores de Fármacos/química , Detección Precoz del Cáncer , Nanopartículas de Magnetita/química , Poliésteres/química , Polietilenglicoles/química , Células 3T3 , Animales , Materiales Biocompatibles/metabolismo , Transporte Biológico , Cápsulas , Portadores de Fármacos/metabolismo , Liberación de Fármacos , Imagen por Resonancia Magnética , Ratones , Tamaño de la Partícula , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA