Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Pharm Res ; 32(2): 628-39, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25145336

RESUMEN

PURPOSE: The lack of effective screening methods and systemic understanding of interaction mechanisms complicates the stabilizer selection process for nanocrystallization. This study focuses on the efficiency of stabilizers with various molecular compositions and structures to stabilize drug nanocrystals. METHODS: Five structurally different polymers were chosen as stabilizers for indomethacin nanocrystals. The affinity of polymers onto drug surfaces was measured using surface plasmon resonance (SPR) and contact angle techniques. Nanosuspensions were prepared using the wet-ball milling technique and their physico-chemical properties were thoroughly characterized. RESULTS: SPR and contact angle measurements correlated very well with each other and showed that the binding efficiency decreased in the order L64 > 17R4 > F68 ≈ T908 ≈ T1107, which is attributed to the reduced PPO/PEO ratio and different polymer structures. The electrostatic interactions between the protonated amine of poloxamines and ionized indomethacin enhanced neither the affinity nor the properties of nanosuspensions, such as particle size and physical stability. CONCLUSIONS: A good stabilizer should have high binding efficiency, full coverage, and optimal hydrophobic/hydrophilic balance. A high affinity combined with short PEO chains (L64, 17R4) caused poor physical stability of nanosuspensions, whereas moderate binding efficiencies (F68, T908, T1107) with longer PEO chains produced physically stable nanosuspensions.


Asunto(s)
Excipientes/metabolismo , Indometacina/metabolismo , Nanopartículas/metabolismo , Polietilenglicoles/metabolismo , Glicoles de Propileno/metabolismo , Interacciones Farmacológicas , Excipientes/química , Indometacina/química , Nanopartículas/química , Polietilenglicoles/química , Polímeros/química , Polímeros/metabolismo , Glicoles de Propileno/química , Resonancia por Plasmón de Superficie/métodos
2.
Langmuir ; 29(27): 8561-71, 2013 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-23758623

RESUMEN

A three-wavelength angular-scanning surface plasmon resonance based analysis has been utilized for characterizing optical properties of organic nanometer-thick layers with a wide range of thicknesses. The thickness and refractive index were determined for sample layers with thicknesses ranging from subnanometer to hundreds of nanometers. The analysis approach allows for simultaneous determination of both the refractive index and thickness without prior knowledge of either the refractive index or the thickness of the sample layers and without the help of other instruments, as opposed to current methods and approaches for characterizing optical properties of organic nanometer-thick layers. The applicability of the three-wavelength angular-scanning surface plasmon resonance approach for characterizing thin and thick organic layers was demonstrated by ex situ deposited mono- and multilayers of stearic acid and hydrogenated soy phosphatidylcholine and in situ layer-by-layer deposition of two different polyelectrolyte multilayer systems. In addition to the three-wavelength angular-scanning surface plasmon resonance approach, another surface plasmon resonance optical phenomenon, i.e., the surface plasmon resonance waveguide mode, was utilized to characterize organic sample layers whose thicknesses border the micrometer scale. This was demonstrated by characterizing both in situ layer-by-layer deposited polyelectrolyte multilayer systems and an ex situ deposited spin-coated polymer layer.


Asunto(s)
Polímeros/química , Resonancia por Plasmón de Superficie , Tamaño de la Partícula , Propiedades de Superficie
3.
Int J Pharm ; 599: 120418, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33647414

RESUMEN

Nanocrystals (NCs) enable the delivery of poorly water-soluble drugs with improved dissolution and bioavailability. However, their uncontrolled release and instability make targeted delivery challenging. Herein, a nano-in-nano delivery system composed of a drug nanocrystal core and liposome shell (NC@Lipo) is presented, which merges the advantages of drug nanocrystals (high drug loading) and liposomes (easy surface functionalization and high stability) for targeted delivery of hydrophobic drugs to tumors. CHMFL-ABL-053 (053), a hydrophobic drug candidate discovered by our group, was employed as a model drug to demonstrate the performance of NC@Lipo delivery system. Surface PEGylated (053-NC@PEG-Lipo) and folic acid-functionalized (053-NC@FA-Lipo) formulations were fabricated by wet ball milling combined with probe sonication. 053-NC@Lipo enabled high drug loading (up to 19.51%), considerably better colloidal stability, and longer circulation in vivo than 053-NC. Compared with free 053, 053-NC@PEG-Lipo and 053-NC@FA-Lipo exhibited higher tumor accumulation and considerably better in vivo antitumor efficacy in K562 xenograft mice with tumor growth inhibition rate (TGI) of up to 98%. Additionally, more effective tumor cell targeting in vitro and higher TGI in vivo were achieved with 053-NC@FA-Lipo. The NC@Lipo strategy may contribute to the targeted delivery of poorly water-soluble drugs with high drug loading, high stability, and tailorable surface, and has potential for the development of more efficient nanocrystal- and liposome-based formulations for commercial and clinical applications. It may also provide new opportunities for potential clinical application of candidate 053.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Animales , Sistemas de Liberación de Medicamentos , Liposomas , Ratones , Agua
4.
Eur J Pharm Sci ; 103: 122-127, 2017 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-28330769

RESUMEN

Electrostatic polymer-DNA complexes (polyplexes) have been widely investigated for DNA delivery, and remarkable differences in transfection efficacy have been seen among the materials. For example, polyethyleneimine (PEI) mediates DNA transfection more effectively than poly(l-lysine) (PLL). Biophysical properties of the polyplexes may explain their different properties in gene delivery. We investigated the structural dynamics in DNA polyplexes, especially the material exchange between the core and shell regions of the PEI and PLL polyplexes. Steady-state fluorescence spectroscopy and double labeling based fluorescence resonance energy transfer (FRET) techniques were used to study the DNA polyplexes. According to our results there is a clear difference between these two polymers: core exchange takes place in PEI but not in PLL polyplexes. Such differences in structural dynamics of polyplexes explain, at least partly, the differences in DNA release and transfection efficacy at cellular level.


Asunto(s)
ADN/química , Polietileneimina/química , Polilisina/química , Transferencia Resonante de Energía de Fluorescencia , Humanos , Cinética , Peso Molecular , Plásmidos , Electricidad Estática
5.
J Phys Chem B ; 121(48): 10782-10792, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-29116794

RESUMEN

Structural dynamics of the polyethylenimine-DNA and poly(l-lysine)-DNA complexes (polyplexes) was studied by steady-state and time-resolved fluorescence spectroscopy using the fluorescence resonance energy transfer (FRET) technique. During the formation of the DNA polyplexes, the negative phosphate groups (P) of DNA are bound by the positive amine groups (N) of the polymer. At N/P ratio 2, nearly all of the DNA's P groups are bound by the polymer N groups: these complexes form the core of the polyplexes. The excess polymer, added to this system to increase the N/P ratio to the values giving efficient gene delivery, forms a positively charged shell around the core polyplex. We investigated whether the exchange between the core and shell regions of PEI and PLL polyplexes takes place. Our results demonstrated a clear difference between the two studied polymers. Shell PEI can replace PEIs previously attached to DNA in the polyplex core, while PLL cannot. Such a dynamic structure of PEI polyplexes compared to a more static one found for PLL polyplexes partially explains the observed difference in the DNA transfection efficiency of these polyplexes. Moreover, the time-resolved fluorescence spectroscopy revealed additional details on the structure of PLL polyplexes: in between the core and shell, there is an intermediate layer where both core and shell PLLs or their parts overlap.


Asunto(s)
ADN/química , Simulación de Dinámica Molecular , Polietileneimina/química , Polilisina/química , Estructura Molecular , Espectrometría de Fluorescencia , Factores de Tiempo
6.
J Control Release ; 203: 85-98, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25701610

RESUMEN

Externally triggered drug release at defined targets allows site- and time-controlled drug treatment regimens. We have developed liposomal drug carriers with encapsulated gold nanoparticles for triggered drug release. Light energy is converted to heat in the gold nanoparticles and released to the lipid bilayers. Localized temperature increase renders liposomal bilayers to be leaky and triggers drug release. The aim of this study was to develop a drug releasing system capable of releasing its cargo to cell cytosol upon triggering with visible and near infrared light signals. The liposomes were formulated using either heat-sensitive or heat- and pH-sensitive lipid compositions with star or rod shaped gold nanoparticles. Encapsulated fluorescent probe, calcein, was released from the liposomes after exposure to the light. In addition, the pH-sensitive formulations showed a faster drug release in acidic conditions than in neutral conditions. The liposomes were internalized into human retinal pigment epithelial cells (ARPE-19) and human umbilical vein endothelial cells (HUVECs) and did not show any cellular toxicity. The light induced cytosolic delivery of calcein from the gold nanoparticle containing liposomes was shown, whereas no cytosolic release was seen without light induction or without gold nanoparticles in the liposomes. The light activated liposome formulations showed a controlled content release to the cellular cytosol at a specific location and time. Triggering with visual and near infrared light allows good tissue penetration and safety, and the pH-sensitive liposomes may enable selective drug release in the intracellular acidic compartments (endosomes, lysosomes). Thus, light activated liposomes with gold nanoparticles are an attractive option for time- and site-specific drug delivery into the target cells.


Asunto(s)
Preparaciones de Acción Retardada/química , Fluoresceínas/administración & dosificación , Colorantes Fluorescentes/administración & dosificación , Oro/química , Liposomas/química , Nanopartículas del Metal/química , Línea Celular , Preparaciones de Acción Retardada/metabolismo , Liberación de Fármacos , Oro/metabolismo , Calor , Células Endoteliales de la Vena Umbilical Humana , Humanos , Concentración de Iones de Hidrógeno , Luz , Liposomas/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo
7.
Eur J Pharm Sci ; 50(3-4): 492-501, 2013 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23981331

RESUMEN

In this study, we present a novel in vitro approach that utilizes two surface-sensitive and label-free techniques, i.e. surface plasmon resonance (SPR) and quartz crystal microbalance (QCM), to study the interfacial events during liposome-target surface interactions. The flow channels of SPR and QCM devices were first synchronized via hydrodynamic modeling. Biotin-streptavidin was used as a model pair and self-assembled monolayers (SAMs) were utilized as model surfaces for targeted liposome-surface interaction studies. The interactions between biotin-liposomes and the streptavidin-biotin-SAM surfaces were investigated under controlled shear flows using the synchronized SPR and QCM devices. The response of the liposome interaction was monitored as a function of the flow rate. The affinity and the amount of bound liposome indicated that the increased flow rate improved the binding of the targeted liposomes to the model membrane surfaces. The combined use of the synchronized SPR and QCM devices for nanoparticle interaction studies clearly demonstrates the effect of the flow rate (or the shear stress) on the liposome binding. Our results suggest that the binding of liposomes to the model membranes is flow rate and shear stress regulated. Thus, the flow rate (or the shear stress), which is usually neglected, should be taken into account during the development and optimization of targeted liposome formulations. In addition, the water content within the liposome layer (including the water inside the liposomes and the water between the liposomes) had a significant influence on the visco-elasticity and the binding kinetics to the SAM surfaces.


Asunto(s)
Proteínas Bacterianas/química , Biotina/análogos & derivados , Liposomas/química , Nanopartículas/química , Biotina/química , Albúmina Sérica Bovina/química , Resonancia por Plasmón de Superficie , Agua/química
8.
J Colloid Interface Sci ; 378(1): 251-9, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22579516

RESUMEN

We have used computational fluid dynamics modeling (CFD) to synchronize the flow conditions in the flow channels of two complementary surface-sensitive characterization techniques: surface plasmon resonance (SPR) and quartz crystal microbalance (QCM). Since the footprint of the flow channels of the two devices is specified by their function, the flow behavior can only be varied either by altering the height of the flow channel, or altering the volumetric rate of flow (flow rate) through the channel. The relevant quantity that must be calibrated is the shear strain on the measurement surface (center and bottom) of the flow channel. Our CFD modeling shows that the flow behavior is in the Stokes flow regime. We were thus able to generate a scaling expression with parameters for flow rate and flow channel height for each of the two devices: f(QCM)=2.64f(SPR)(h(QCM)/h(SPR)(2), where f(QCM) and f(SPR) are the flow rates in the SPR and QCM flow channels, respectively, and h(QCM)/h(SPR) is the ratio of the heights of the two channels. We demonstrate the success of our calibration procedure through the combined use of commercially available SPR and QCM flow channel devices on both a biomolecular interaction system of surface immobilized biotin and streptavidin and a targeted drug delivery model system of biotinylated liposomes interacting with a streptavidin functionalized surface.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Modelos Químicos , Tecnicas de Microbalanza del Cristal de Cuarzo/normas , Resonancia por Plasmón de Superficie/métodos , Resonancia por Plasmón de Superficie/normas , Biotina/química , Calibración , Sistemas de Liberación de Medicamentos/normas , Liposomas , Tecnicas de Microbalanza del Cristal de Cuarzo/métodos , Reología , Resistencia al Corte , Estreptavidina/química
9.
PLoS One ; 7(7): e41410, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22844475

RESUMEN

BACKGROUND: Epidermal growth factor receptor (EGFR) is overexpressed in many solid tumor types, such as ovarian carcinoma. Immunoliposome based drug targeting has shown promising results in drug delivery to the tumors. However, the ratio of tumor-to-normal tissue concentrations should be increased to minimize the adverse effects of cytostatic drugs. METHODOLOGY/PRINCIPAL FINDINGS: We studied the EGFR-targeted doxorubicin immunoliposomes using pre-targeting and local intraperitoneal (i.p.) administration of the liposomes. This approach was used to increase drug delivery to tumors as compared to direct intravenous (i.v.) administration of liposomes. EGFR antibodies were attached on the surface of PEG coated liposomes using biotin-neutravidin binding. Receptor mediated cellular uptake and cytotoxic efficacy of EGFR-targeted liposomes were investigated in human ovarian adenocarcinoma (SKOV-3 and SKOV3.ip1) cells. In vivo distribution of the liposomes in mice was explored using direct and pre-targeting approaches and SPECT/CT imaging. Targeted liposomes showed efficient and specific receptor-mediated binding to ovarian carcinoma cells in vitro, but the difference in cytotoxicity between targeted and non-targeted liposomes remained small. The relatively low cytotoxic efficacy is probably due to insufficient doxorubicin release from the liposomes rather than lack of target binding. Tumor uptake of targeted liposomes in vivo was comparable to that of non-targeted liposomes after both direct and pre-targeting administration. For both EGFR-targeted and non-targeted liposomes, the i.p. administration increased liposome accumulation to the tumors compared to i.v. injections. CONCLUSIONS/SIGNIFICANCE: Intraperitoneal administration of liposomes may be a beneficial approach to treat the tumors in the abdominal cavity. The i.p. pre-targeting method warrants further studies as a potential approach in cancer therapy.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Doxorrubicina/administración & dosificación , Terapia Molecular Dirigida/métodos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales Humanizados , Avidina/metabolismo , Biotina/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica , Cetuximab , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Receptores ErbB/inmunología , Receptores ErbB/metabolismo , Estudios de Factibilidad , Femenino , Humanos , Liposomas , Ratones , Imagen Multimodal , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/patología , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA