Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chin J Traumatol ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38514297

RESUMEN

PURPOSE: This study evaluated the methods and clinical effects of multidisciplinary collaborative treatment for occlusal reconstruction in patients with old jaw fractures and dentition defects. METHODS: Patients with old jaw fractures and dentition defects who underwent occlusal reconstruction at the Third Affiliated Hospital of Air Force Military Medical University from January 2018 to December 2022 were enrolled. Clinical treatment was classified into 3 phases. In phase I, techniques such as orthognathic surgery, microsurgery, and distraction osteogenesis were employed to reconstruct the correct three-dimensional (3D) jaw position relationship. In phase II, bone augmentation and soft tissue management techniques were utilized to address insufficient alveolar bone mass and poor gingival soft tissue conditions. In phase III, implant-supported overdentures or fixed dentures were used for occlusal reconstruction. A summary of treatment methods, clinical efficacy evaluation, comparative analysis of imageological examinations, and satisfaction questionnaire survey were utilized to evaluate the therapeutic efficacy in patients with traumatic old jaw fractures and dentition defects. All data are summarized using the arithmetic mean and standard deviation and compared using independent sample t-tests. RESULTS: In 15 patients with old jaw fractures and dentition defects (an average age of 32 years, ranging from 18 to 53 years), there were 7 cases of malocclusion of single maxillary fracture, 6 of malocclusion of single mandible fracture, and 2 of malocclusion of both maxillary and mandible fractures. There were 5 patients with single maxillary dentition defects, 2 with single mandibular dentition defects, and 8 with both maxillary and mandibular dentition defects. To reconstruct the correct 3D jaw positional relationship, 5 patients underwent Le Fort I osteotomy of the maxilla, 3 underwent bilateral sagittal split ramus osteotomy of the mandible, 4 underwent open reduction and internal fixation for old jaw fractures, 3 underwent temporomandibular joint surgery, and 4 underwent distraction osteogenesis. All patients underwent jawbone augmentation, of whom 4 patients underwent a free composite vascularized bone flap (26.66%) and the remaining patients underwent local alveolar bone augmentation. Free gingival graft and connective tissue graft were the main methods for soft tissue augmentation (73.33%). The 15 patients received 81 implants, of whom 11 patients received implant-supported fixed dentures and 4 received implant-supported removable dentures. The survival rate of all implants was 93.82%. The final imageological examination of 15 patients confirmed that the malocclusion was corrected, and the clinical treatment ultimately achieved occlusal function reconstruction. The patient satisfaction questionnaire survey showed that they were satisfied with the efficacy, phonetics, aesthetics, and comfort after treatment. CONCLUSION: Occlusal reconstruction of old jaw fractures and dentition defects requires a phased sequential comprehensive treatment, consisting of 3D spatial jaw correction, alveolar bone augmentation and soft tissue augmentation, and implant-supported occlusal reconstruction, achieving satisfactory clinical therapeutic efficacy.

2.
Cell Prolif ; 54(4): e13008, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33634540

RESUMEN

OBJECTIVES: Au nanoclusters (AuNCs) have been used widely in fluorescence bio-imaging because of their good fluorescence, small particle size and non-cytotoxicity. AuNCs are also efficient in computed tomography (CT) imaging. Hence, a dual-modal imaging probe can be constructed without any complicated modification processes by exploiting the excellent performance of AuNCs. In the present study, AuNCs were enriched with mesoporous silica nanoparticles (MSNs) to obtain enhanced fluorescence/CT dual-modal imaging, which was capable of acquiring more imaging information for diseases compared with single-mode imaging. MATERIALS AND METHODS: Biocompatible bovine serum albumin (BSA)-capped AuNCs were prepared and loaded into amine-functionalized MSNs to form MSN@AuNCs. BSA-AuNCs, MSNs, and MSN@AuNCs were characterized by ultraviolet-visible (UV-vis) spectra, transmission electron microscopy (TEM), fluorescence spectra, and zeta potential. CT imaging was recorded using micro-CT scanning. Fluorescence imaging was measured using confocal laser scanning microscopy and flow cytometry. RESULTS: The prepared AuNCs and MSNs possessed good properties as previously reported. The fluorescence intensity and CT value of the AuNCs were enhanced after being enriched with MSNs. The nanoparticles were both non-cytotoxic. Confocal laser scanning microscopy and flow cytometry indicated that MSN@AuNCs in CAL-27 cells showed improved fluorescence imaging compared with simple AuNCs at the same concentration. CONCLUSIONS: The results revealed that the strategy of enriching AuNCs with MSNs can obtain highly sensitive fluorescence/CT dual-modal imaging, which indicated the potential of this nanoparticle in the diagnosis and treatment of disease.


Asunto(s)
Materiales Biocompatibles/química , Oro/química , Microscopía Confocal , Nanopartículas/química , Dióxido de Silicio/química , Microtomografía por Rayos X , Animales , Materiales Biocompatibles/farmacología , Bovinos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Ratones , Nanopartículas/toxicidad , Porosidad , Albúmina Sérica Bovina/química
3.
Stem Cell Res Ther ; 12(1): 260, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33933140

RESUMEN

BACKGROUND: Although increasing evidence has demonstrated that human dental pulp stem cells (hDPSCs) are efficacious for the clinical treatment of skeletal disorders, the underlying mechanisms remain incompletely understood. Osteoarthritis (OA) is one of the most common degenerative disorders in joints and is characterized by gradual and irreversible cartilaginous tissue damage. Notably, immune factors were newly identified to be closely related to OA development. In this study, we explored the modulatory effects of clinical-grade hDPSCs on osteoarthritic macrophages and their protective effects on cartilaginous tissues in OA joints. METHODS: The cell morphology, immunophenotype, and inflammatory factor expression of osteoarthritic macrophages were explored by phase contrast microscope, transmission electron microscopy, immunostaining, flow cytometry, quantitative polymerase chain reaction, and enzyme linked immunosorbent assay, respectively. Additionally, the factors and signaling pathways that suppressed macrophage activation by hDPSCs were determined by enzyme-linked immunosorbent assay and western-blotting. Furthermore, hDPSCs were administered to a rabbit knee OA model via intra-articular injection. Macrophage activation in vivo and cartilaginous tissue damage were also evaluated by pathological analysis. RESULTS: We found that hDPSCs markedly inhibited osteoarthritic macrophage activation in vitro. The cell morphology, immunophenotype, and inflammatory factor expression of osteoarthritic macrophages changed into less inflammatory status in the presence of hDPSCs. Mechanistically, we observed that hDPSC-derived hepatocyte growth factor and transforming growth factor ß1 mediated the suppressive effects on osteoarthritic macrophages. Moreover, phosphorylation of MAPK pathway proteins contributed to osteoarthritic macrophage activation, and hDPSCs suppressed their activation by partially inactivating those pathways. Most importantly, injected hDPSCs inhibited macrophage activation in osteochondral tissues in a rabbit knee OA model in vivo. Further histological analysis showed that hDPSCs alleviated cartilaginous damage to knee joints. CONCLUSIONS: In summary, our findings reveal a novel function for hDPSCs in suppressing osteoarthritic macrophages and suggest that macrophages are efficient cellular targets of hDPSCs for alleviation of cartilaginous damage in OA. hDPSCs treat OA via an osteoarthritic macrophages-dependent mechanisms. hDPSCs suppress the activation of osteoarthritic macrophages in vitro and in vivo and alleviate cartilaginous lesions in OA models.


Asunto(s)
Pulpa Dental , Osteoartritis , Animales , Diferenciación Celular , Células Cultivadas , Humanos , Macrófagos , Osteoartritis/terapia , Conejos , Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA