Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 11: 1271140, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711454

RESUMEN

Desired orthopedic implant materials must have a good biological activity and possess appropriate mechanical property that correspond to those of human bone. Although polyetheretherketone (PEEK) has displayed a promising application prospect in musculoskeletal and dentistry reconstruction thanks to its non-biodegradability and good biocompatibility in the body, the poor osseointegration and insufficient mechanical strength have significantly limited its application in the repair of load-bearing bones and surgical operations. In this study, carbon nanotubes (CNT)/calcium silicate (CS)/polyetheretherketone ternary composites were fabricated for the first time. The addition of CS was mainly aimed at improving biological activities and surface hydrophilicity, but it inevitably compromised the mechanical strength of PEEK. CNT can reinforce the composites even when brittle CS was introduced and further upgraded the biocompatibility of PEEK. The CNT/CS/PEEK composites exhibited higher mechanical strengths in tensile and bending tests, 64% and 90% higher than those of brittle CS/PEEK binary composites. Besides, after incorporation of CNT and CS into PEEK, the hydrophilicity, surface roughness and ability to induce apatite-layer deposition were significantly enhanced. More importantly, the adhesion, proliferation, and osteogenic differentiation of mouse embryo osteoblasts were effectively promoted on CNT/CS/PEEK composites. In contrast to PEEK, these composites exhibited a more satisfactory biocompatibility and osteoinductive activity. Overall, these results demonstrate that ternary CNT/CS/PEEK composites have the potential to serve as a feasible substitute to conventional metal alloys in musculoskeletal regeneration and orthopedic implantation.

2.
Colloids Surf B Biointerfaces ; 195: 111218, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32650218

RESUMEN

Poly (lactic acid) (PLA), although extensively used as biomedical materials, has the distinct disadvantage of producing acidic byproducts which can lead to tissue inflammatory reactions and clinic failure. Here we presented a combination of Poly (lactic acid-co-trimethylene carbonate) and natural polymer chitosan, improving its compression resilience and reducing its acidic byproducts. In this case, we developed 3D scaffolds using solvent/nonsolvent technique sintered PLA-TMC and PLA-TMC/Chitosan microspheres with selected particle size (355-500 µm). By controlling the preparation methods and parameters, the porosity, pore size and mechanical properties of microsphere scaffolds can be designed and controlled. Strikingly, PLA-TMC/15 % Chitosan microsphere scaffolds possess shape-memory effect and rapidly recovered to initial shape when heated to 37℃ within 300 s. The microsphere scaffolds had a 3D porous architecture with pore size ranging from 105.67 ± 12.51 µm to 129.69 ± 11.39 µm. The mechanical and physicochemical properties of microspheres and scaffolds were characterized in details. Moreover, all microsphere scaffolds were qualified as their compressive modulus (120.36 MPa -195.32 MPa) matched the cancellous bone during 16 weeks degradation. Furthermore, CCK8 cell proliferation assay and ALP activity assay verified that the scaffolds were non-toxic and conductive to cell adhesion. The scaffolds are expected to be used in bone regeneration and bone repair field.


Asunto(s)
Quitosano , Ingeniería de Tejidos , Dioxanos , Ácido Láctico , Microesferas , Poliésteres , Porosidad , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA