Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 192: 110326, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33068580

RESUMEN

Microplastics (MPs) in the Arctic have raised increasing concern, but knowledge on MP contamination in benthic organisms from Arctic shelf regions, e.g., the Chukchi Sea is still limited. Therefore, the present study investigated the occurrence, characteristics, sources, and environmental implications of MPs in the three most common benthic species, namely sea anemone (Actiniidae und.), deposit-feeding starfish (Ctenodiscus crispatus), and snow crab (Chionoecetes opilio), from the Chukchi Sea. The abundances of MPs in the three benthic species were significantly greater than those from the Bering Sea, but lower than those from other regions globally. The top three compositions of MPs in the three species were polyester, nylon, and polyethylene terephthalate. The detection limit for MP size in the present study was 0.03 mm and the mean size of MP in the three species was 0.89 ± 0.06 mm. The surfaces of MPs found in the starfish and crabs were covered with many attachments, cracks, and hollows, while the surfaces of MPs found in the sea anemones were smooth, which was likely a consequence of different feeding behaviors. There was a significantly positive correlation between the abundances of MPs and other anthropogenic substances. The mean MP abundances in the sea anemones ranged from 0.2 items/individual to 1.7 items/individual, which was significantly higher than that in the deposit-feeding starfish (0.1-1.4 items/individual) and snow crabs (0.0-0.6 items/individual). Sea anemones inhabiting lower latitudes ingested relatively higher levels of MPs than those inhabiting higher latitudes. The MP abundances in the sea anemones are significantly and positively correlated with the seasonal reduced ratio of sea ice coverage from August to September. Our findings indicate that sea anemones could function as a bioindicator of MP pollution, and that the MPs in the benthos from the Chukchi Sea might originate from the melting sea ice, fishery activities and ocean currents.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Regiones Árticas , Monitoreo del Ambiente , Plásticos , Contaminantes Químicos del Agua/análisis
2.
Sci Total Environ ; 806(Pt 1): 150530, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34844325

RESUMEN

Sediment has been considered as an important sink for microplastics (MPs), but there are limited reports about the spatial and temporal variability of MPs in sediment from the Arctic Ocean. Furthermore, understanding is lacking on the correlation between Arctic sea ice variation and MP abundance in sediment. This study aimed to assess the MP contamination in the sediment from the Chukchi Sea over five years through three voyages (in 2016, 2018, and 2020). The MP abundances in the sediments from the Chukchi Plateau and Chukchi Shelf over five years ranged from 33.66 ± 15.08 to 104.54 ± 28.07 items kg-1 dry weight (DW) and 20.63 ± 6.71 to 55.64 ± 22.61 items kg-1 DW, respectively. The MP levels from the Chukchi Sea were lower than those from the Eastern Arctic Ocean. Our findings suggest that the Chukchi Plateau is an accumulation zone for fibers related to fishing gear and textiles under the dual influence of the Pacific and Atlantic Ocean currents. However, the reduction of these fibers in the sediment from the Chukchi Shelf might be related to bottom currents, sediment resuspension, and biomass. Moreover, the MP abundance in the sediment from the Chukchi Sea was positively correlated with the reduction of Arctic sea ice, suggesting that the melting sea ice contributes to the increase in MP levels in the sediment. The increase in blue MPs from the Chukchi Plateau over time might be attributed to melting sea ice or intense fishing activity, whereas the increase of the smallest MPs in this region could be owing to the breakdown of larger plastics during long-distance transport or the easier settlement of smaller MPs. Further time-series investigations are urgently required to improve the understanding of the environmental fate and transport of MPs among the different Arctic environmental compartments.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Regiones Árticas , Monitoreo del Ambiente , Cubierta de Hielo , Plásticos , Contaminantes Químicos del Agua/análisis
3.
Mar Environ Res ; 167: 105295, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33714106

RESUMEN

Marine biota, especially commercially important species, serves as a basis for human nutrition. However, millions of tons of plastic litter are produced and enter the marine environment every year, with potential adverse impacts on marine organisms. In the present study, we investigated the occurrence and characteristics of microplastic (MP) pollution in the digestive tracts of 13 species of wild nektons from 20 stations sampled in the South China Sea (SCS) and the Indian Ocean (IO), and assessed the human health risks of MPs. The detection rate of MPs ranged from 0.00% to 50.00% from the SCS, which was dramatically lower than that from the IO (10.00-80.00%). The average abundance of MP was 0.18 ± 0.06 items g wet weight-1 (ww-1) in the SCS, which was significantly lower than that in the IO with a concentration of 0.70 ± 0.16 items g ww-1. Most MPs were fibers in type, black in color, and polyester (PES) in polymer composition in both the SCS and IO. Interestingly, distinct profiles of MP pollution were found between the benthic and pelagic nektons: 1) The predominant MP composition was PES in the benthic nektons, whereas polyamide (PA) accounted for a larger part of the total MP count in the pelagic nektons within the SCS; 2) The abundance of MP in the benthic nektons (0.52 ± 0.24 items individual-1) was higher than that in the pelagic nektons (0.30 ± 0.11 items individual-1). Accordingly, the mean hazard score of MPs detected in the benthic nektons (220.66 ± 210.75) was higher than that in the pelagic nektons (49.53 ± 22.87); 3) The mean size of the MP in the pelagic nektons (0.84 ± 0.17 mm) was larger than that in the benthic nektons (0.49 ± 0.09 mm). Our findings highlight the need to further investigate the ecological impacts of MPs on wild nekton, especially commercially important species, and its potential implications for human health.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Humanos , Océano Índico , Plásticos , Contaminantes Químicos del Agua/análisis
4.
Zookeys ; (752): 149-161, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29719478

RESUMEN

A new identification of Gymnothorax minor (Temminck & Schlegel, 1846) is documented based on morphological characteristics and DNA barcoding. Sixty-one individuals of G. minor were collected from the East China Sea and the South China Sea. This species was previously reported as Gymnothorax reticularis Bloch, 1795 in China because of the similarity in external shape and color. Gymnothorax minor can be easily distinguished from G. reticularis by its color pattern of 18-20 irregular dark brown vertical bars and the body having scattered small brown spots. Additionally, the teeth are uniserial on both jaws, and the vertebrae number 137-139. By combining congener sequences of the cytochrome oxidase I (COI) gene from GenBank, two groups were detected among all the COI sequences of the currently named G. minor, which further indicated that two valid species were present based on genetic distance. A divergence also occurred on the number of vertebrae between the northern and southern populations. The phylogenetic and morphological analysis strongly supports that the northern and southern populations of G. minor are two different species. Furthermore, the distribution area of the northern G. minor has expanded southward to 5°15'N in the South China Sea. More specimens of G. minor and G. reticularis are crucial in order to define their geographical distribution boundaries and provide the correct DNA barcoding.

5.
Chemosphere ; 209: 298-306, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29933166

RESUMEN

The seafloor is recognized as one of the major sinks for microplastics (MPs). However, to date there have been no studies reported the MP contamination in benthic organisms from the Arctic and sub-Arctic regions. Therefore, this study provided the first data on the abundances and characteristics of MPs in a total of 413 dominant benthic organisms representing 11 different species inhabiting in the shelf of Bering and Chukchi Seas. The mean abundances of MP uptake by the benthos from all sites ranged from 0.02 to 0.46 items g-1 wet weight (ww) or 0.04-1.67 items individual-1, which were lower values than those found in other regions worldwide. The highest value appeared at the northernmost site, implying that the sea ice and the cold current represent possible transport mediums. Interestingly, the predator A. rubens ingested the maximum quantities of MPs, suggesting that the trophic transfer of MPs through benthic food webs may play a critical role. Fibers constituted the major type (87%) in each species, followed by film (13%). The colors of fibers were classified as red (46%) and transparent (41%), and the film was all gray. The predominant composition was polyamide (PA) (46%), followed by polyethylene (PE) (23%), polyester (PET) (18%) and cellophane (CP) (13%). The most common sizes of MPs concentrated in the interval from 0.10 to 1.50 mm, and the mean size was 1.45 ±â€¯0.13 mm. Further studies about the temporal trends and detrimental effects of MPs remain to be carried out in benthic organisms from the Arctic and sub-Arctic regions.


Asunto(s)
Plásticos/efectos adversos , Animales , Regiones Árticas , Plásticos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA