Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanoscale ; 7(44): 18677-85, 2015 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-26499788

RESUMEN

The development of coating materials for neural interfaces has been a pursued to improve the electrical, mechanical and biological performances. For these goals, a bioactive coating was developed in this work featuring a poly(3,4-ethylenedioxythiophene) (PEDOT)/carbon nanotube (CNT) composite and covalently bonded YIGSR and RGD. Its biological effect and electrical characteristics were assessed in vivo on microwire arrays (MWA). The coated electrodes exhibited a significantly higher charge storage capacity (CSC) and lower electrochemical impedance at 1 kHz which are desired to improve the stimulating and recording performances, respectively. Acute neural recording experiments revealed that coated MWA possess a higher signal/noise ratio capturing spikes undetected by uncoated electrodes. Moreover, coated MWA possessed more active sites and single units, and the noise floor of coated electrodes was lower than that of uncoated electrodes. There is little information in the literature concerning the chronic performance of bioactively modified neural interfaces in vivo. Therefore in this work, chronic in vivo tests were conducted and the PEDOT/PSS/MWCNT-polypeptide coated arrays exhibited excellent performances with the highest mean maximal amplitude from day 4 to day 12 during which the acute response severely compromised the performance of the electrodes. In brief, we developed a simple method of covalently bonding YIGSR and RGD to a PEDOT/PSS/MWCNT-COOH composite improving both the biocompatibility and electrical performance of the neural interface. Our findings suggest that YIGSR and RGD modified PEDOT/PSS/MWCNT is a promising bioactivated composite coating for neural recording and stimulating.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Ensayo de Materiales , Nanotubos de Carbono/química , Nanocables/química , Neuronas/metabolismo , Oligopéptidos , Polímeros , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Neuronas/citología , Oligopéptidos/química , Oligopéptidos/farmacología , Células PC12 , Polímeros/química , Polímeros/farmacología , Ratas
2.
Biomaterials ; 35(22): 5679-88, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24746964

RESUMEN

Poly (N-isopropylacrylamide) (PNIPAAm) hydrogel was a widely used carrier in therapeutic agent delivery. However, its bioactivities for encapsulated cells were not satisfactory. In the study, we aimed to determine whether modification with single-wall carbon nanotubes (SWCNTs) could improve the bioactivitis, especially supportive adhesion of PNIPAAm to encapsulated cells and favor their efficacy in myocardial repair. A thermosensitive SWCNTs-modified PNIPAAm hydrogel (PNIPAAm/SWCNTs) were prepared by incorporating the SWCNTs into base PNIPAAm hydrogel. The bioactivities of the resulted hydrogel to brown adipose-derived stem cells (BASCs) were evaluated and compared with the base PNIPAAm hydrpgel in vitro. Then, the PNIPAAm-containing hydrogel was used as carrier for imtromyocardial delivery of BASCs in rats with myocardial infarction. The efficacy of PNIPAAm/SWCNTs hydrogel in stem cell-based myocardial repair was systematically evaluated. In vitro study showed that the PNIPAAm/SWCNTs hydrogel demonstrated significantly higher bioactivities to encapsulated BASCs compared with onefold PNIPAAm hydrogel, including promoting cell adhesion and proliferation. When used as carrier for intramyocardial delivery of BASCs after myocardial infarction, the PNIPAAm/SWCNTs hydrogel significantly enhanced the engraftment of seeding cells in infarct myocardium and augmented their therapeutic efficacies in myocardial infarction (MI). The data provided a supportive evidence for the myocardial application of the SWCNTs-modified hydrogel and offered a new perspective in development or improvement of cardiac tissue engineering scaffold.


Asunto(s)
Resinas Acrílicas/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Infarto del Miocardio/terapia , Miocardio/citología , Nanotubos de Carbono/química , Trasplante de Células Madre/métodos , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Adhesión Celular , Células Cultivadas , Masculino , Nanotubos de Carbono/ultraestructura , Ratas , Ratas Sprague-Dawley , Temperatura
3.
Biomaterials ; 34(36): 9071-81, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24001992

RESUMEN

Overproduction of reactive oxygen species (ROS) is closely associated with myocardial infarction. The oxidative stress damage caused by ROS in grafted cells and host cells presents a major obstacle for successful myocardial repairs in cardiac tissue engineering. Previous injectable biomaterials in use of myocardial repairs typically lack consideration of their antioxidant properties. In this work, a thermosensitive chitosan chloride-glutathione (CSCl-GSH) hydrogel was developed to suppress the oxidative stress injury in cardiomyocytes (CMs). Glutathione (GSH) was conjugated on the chitosan chloride (CSCl) chain via amide bonds between carboxylic acid moieties of GSH and amine groups of CSCl. Our data show that CSCl-GSH conjugates in vitro could effectively scavenge the superoxide anion, hydroxyl radical and DPPH radical even at high concentrations and its antioxidant capacity can be modulated via adjusting the grafted degree of CSCl-GSH conjugates. In addition, CSCl-GSH hydrogels have shown an excellent biocompatibility to support the adhesion and survival of CMs. Moreover, it can remove the excessive intracellular ROS and thus suppress the oxidative stress damage and apoptosis in CMs in the presence of high ROS. These results suggest CSCl-GSH hydrogels could effectively support the myocardial repair via attenuating the oxidative stress damage to cells.


Asunto(s)
Quitosano/farmacología , Glutatión/farmacología , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Rastreo Diferencial de Calorimetría , Caspasa 3/metabolismo , Catalasa/metabolismo , Adhesión Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quitosano/síntesis química , Quitosano/química , Depuradores de Radicales Libres/farmacología , Glutatión/síntesis química , Glutatión/química , Peróxido de Hidrógeno/farmacología , Inyecciones , Espectroscopía de Resonancia Magnética , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Ratas , Ratas Sprague-Dawley , Espectroscopía Infrarroja por Transformada de Fourier , Superóxido Dismutasa/metabolismo , Temperatura , Viscosidad/efectos de los fármacos
4.
J Tissue Eng Regen Med ; 6(10): 786-92, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22052853

RESUMEN

To tissue engineer a kidney is a formidable task because of the complex cell composition and structures in the kidney. This study reconstructed renal tissues using mixed renal cells in collagen/Matrigel® scaffolds in vitro. Neonatal rat renal cells were seeded in collagen I supplemented with Matrigel in a casting mold that could exert static stretch when the renal constructs contracted. During in vitro culture, the renal constructs were observed under microscope and analyzed by histological and immunofluorescent examinations. Results showed that the mixed renal cells reconstituted renal tubular and glomeruli-like structures with different appearances at varying developmental stages. Tubular structures were formed by CK18-positive cells with similar appearances lining the surrounding hollow centres. The glomeruli-like structures were tufts of cell aggregates containing Flk-1-positive cells. These results show that neonatal rat renal cells self-assembled into engineered renal tissues containing both tubules and glomeruli-like structures when cultured in 3D collagen/Matrigel scaffold in vitro.


Asunto(s)
Materiales Biocompatibles/farmacología , Colágeno/farmacología , Glomérulos Renales/citología , Túbulos Renales/citología , Laminina/farmacología , Proteoglicanos/farmacología , Andamios del Tejido , Animales , Materiales Biocompatibles/química , Células Cultivadas , Colágeno/química , Combinación de Medicamentos , Glomérulos Renales/metabolismo , Túbulos Renales/metabolismo , Laminina/química , Proteoglicanos/química , Ratas , Ratas Sprague-Dawley , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA