Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 30(11): 3142-53, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24617504

RESUMEN

This paper addresses the question of whether one can use lanthanide nanoparticles (e.g., NaHoF4) to detect surface biomarkers expressed at low levels by mass cytometry. To avoid many of the complications of experiments on live or fixed cells, we carried out proof-of-concept experiments using aqueous microgels with a diameter on the order of 700 nm as a proxy for cells. These microgels were used to test whether nanoparticle (NP) reagents would allow the detection of as few as 100 proteins per "cell" in cell-by-cell assays. Streptavidin (SAv), which served as the model biomarker, was attached to the microgel in two different ways. Covalent coupling to surface carboxyls of the microgel led to large numbers (>10(4)) of proteins per microgel, whereas biotinylation of the microgel followed by exposure to SAv led to much smaller numbers of SAv per microgel. Using mass cytometry, we compared two biotin-containing reagents, which recognized and bound to the SAvs on the microgel. One was a metal chelating polymer (MCP), a biotin end-capped polyaspartamide containing 50 Tb(3+) ions per probe. The other was a biotinylated NaHoF4 NP containing 15 000 Ho atoms per probe. Nonspecific binding was determined with bovine serum albumin (BSA) conjugated microgels. The MCP was effective at detecting and quantifying SAvs on the microgel with covalently bound SAv (20 000 SAvs per microgel) but was unable to give a meaningful signal above that of the BSA-coated microgel for the samples with low levels of SAv. Here the NP reagent gave a signal 2 orders of magnitude stronger than that of the MCP and allowed detection of NPs ranging from 100 to 500 per microgel. Sensitivity was limited by the level of nonspecific adsorption. This proof of concept experiment demonstrates the enhanced sensitivity possible with NP reagents in cell-by-cell assays by mass cytometry.


Asunto(s)
Biomimética/métodos , Técnicas Citológicas/métodos , Elementos de la Serie de los Lantanoides/química , Nanopartículas/química , Animales , Biotina/metabolismo , Bovinos , Geles , Polímeros/química , Albúmina Sérica Bovina/metabolismo , Estreptavidina/metabolismo
2.
Langmuir ; 27(11): 7265-75, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21561077

RESUMEN

This article describes the synthesis and characterization of two series of functional polyelectrolyte copolymer microgels intended for bioassays based upon mass cytometry, a technique that detects metals by inductively coupled plasma mass spectrometry (ICP-MS). The microgels were loaded with Eu(III) ions, which were then converted in situ to EuF(3) nanoparticles (NPs). Both types of microgels are based upon copolymers of N-isopropylacrylamide (NIPAm) and methacrylic acid (MAA), poly(NIPAm/VCL/MAA) (VCL = N-vinylcaprolactam, V series), and poly(NIPAm/MAA/PEGMA) (PEGMA = poly(ethylene glycol)methacrylate, PG series). Very specific conditions (full neutralization of the MAA groups) were required to confine the EuF(3) NPs to the core of the microgels. We used mass cytometry to measure the number and the particle-to-particle variation of Eu ions per microgel. By controlling the amount of EuCl(3) added to the neutralized microgels. we could vary the atomic content of individual microgels from ca. 10(6) to 10(7) Eu atoms, either in the form of Eu(3+) ions or EuF(3) NPs. Leaching profiles of Eu ions from the hybrid microgels were measured by traditional ICP-MS.


Asunto(s)
Resinas Acrílicas/química , Electrólitos/química , Elementos de la Serie de los Lantanoides/química , Espectrometría de Masas , Caprolactama/química , Fenómenos Químicos , Europio/química , Geles , Metacrilatos/química , Temperatura
3.
Langmuir ; 24(15): 8215-9, 2008 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-18597501

RESUMEN

Hydrophobic lead sulfide quantum dots (PbS/OA) synthesized in the presence of oleic acid were transferred from nonpolar organic solvents to polar solvents such as alcohols and water by a simple ligand exchange with poly(acrylic acid) (PAA). Ligand exchange took place rapidly at room temperature When a colloidal solution of PbS/OA in tetrahydrofuran (THF) was treated with excess PAA, the PbS/PAA nanocrystals that formed were insoluble in hexane and toluene but could be dissolved in methanol or water, where they formed colloidal solutions that were stable for months. Ligand exchange was accompanied by a small blue shift in the band-edge absorption, consistent with a small reduction in particle size. While there was a decrease in quantum yield associated with ligand exchange and transfer to polar solvents, as is commonly found for colloidal quantum dots, the quantum yields determined were impressively high: PbS/OA in toluene (82%) and in THF (58%); PbS/PAA in THF (42%) and in water (24%). The quantum yields for the PbS/PAA solutions decreased over time as the solutions were allowed to age in the presence of air.


Asunto(s)
Resinas Acrílicas/química , Plomo/química , Nanopartículas del Metal/química , Compuestos Orgánicos/química , Solventes/química , Sulfuros/química , Agua/química , Ligandos , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión , Puntos Cuánticos , Espectrometría de Fluorescencia , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA