Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Differentiation ; 134: 52-60, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37898102

RESUMEN

Epithelial-mesenchymal interactions occur during tooth development. The dental epithelium (DE) is regarded as the signal center that regulates tooth morphology. However, the mechanism by which DE regulates the differentiation of mesenchyme-derived dental papilla (DP) into odontoblasts remains unclear. Using miniature pigs as a model, we analyzed the expression profiles of the DE and DP during odontoblast differentiation using high-throughput RNA sequencing. The phosphatidylinositol-3-kinase (PI3K)/AKT pathway is one of the most enriched pathways in both DE and DP. The PI3K/AKT pathway was first activated in the inner enamel epithelium but not in the DP on embryonic day 50. This pathway was then activated in the odontoblast layer on embryonic day 60. We showed that AKT activation promoted odontoblast differentiation of DP cells. We further demonstrated that activation of PI3K/AKT signaling in the DE effectively increased the expression levels of AKT and dentin sialophosphoprotein in DP cells. Additionally, we found that DE cells secreted collagen type IV alpha 6 chain (COL4A6) downstream of epithelial AKT signaling to positively regulate mesenchymal AKT levels. Therefore, our data suggest that PI3K/AKT signaling from the DE to the DP promotes odontoblast differentiation via COL4A6 secretion.


Asunto(s)
Odontoblastos , Proteínas Proto-Oncogénicas c-akt , Animales , Porcinos , Odontoblastos/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Diferenciación Celular/genética , Epitelio
2.
BMC Infect Dis ; 23(1): 42, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690957

RESUMEN

BACKGROUND: Coronavirus disease 2019 is a type of acute infectious pneumonia and frequently confused with influenza since the initial symptoms. When the virus colonized the patient's mouth, it will cause changes of the oral microenvironment. However, few studies on the alterations of metabolism of the oral microenvironment affected by SARS-CoV-2 infection have been reported. In this study, we explored metabolic alterations of oral microenvironment after SARS-CoV-2 infection. METHODS: Untargeted metabolomics (UPLC-MS) was used to investigate the metabolic changes between oral secretion samples of 25 COVID-19 and 30 control participants. To obtain the specific metabolic changes of COVID-19, we selected 25 influenza patients to exclude the metabolic changes caused by the stress response of the immune system to the virus. Multivariate analysis (PCA and PLS-DA plots) and univariate analysis (students' t-test) were used to compare the differences between COVID-19 patients and the controls. Online hiplot tool was used to perform heatmap analysis. Metabolic pathway analysis was conducted by using the MetaboAnalyst 5.0 web application. RESULTS: PLS-DA plots showed significant separation of COVID-19 patients and the controls. A total of 45 differential metabolites between COVID-19 and control group were identified. Among them, 35 metabolites were defined as SARS-CoV-2 specific differential metabolites. Especially, the levels of cis-5,8,11,14,17-eicosapentaenoic acid and hexanoic acid changed dramatically based on the FC values. Pathway enrichment found the most significant pathways were tyrosine-related metabolism. Further, we found 10 differential metabolites caused by the virus indicating the body's metabolism changes after viral stimulation. Moreover, adenine and adenosine were defined as influenza virus-specific differential metabolites. CONCLUSIONS: This study revealed that 35 metabolites and tyrosine-related metabolism pathways were significantly changed after SARS-CoV-2 infection. The metabolic alterations of oral microenvironment in COVID-19 provided new insights into its molecular mechanisms for research and prognostic treatment.


Asunto(s)
COVID-19 , Gripe Humana , Humanos , SARS-CoV-2 , Cromatografía Liquida , Espectrometría de Masas en Tándem , Tirosina
3.
Int J Med Sci ; 19(1): 132-141, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34975307

RESUMEN

The fibroblast growth factor (FGF) pathway plays an important role in epithelial-mesenchymal interactions during tooth development. Nevertheless, how the ligands, receptors, and antagonists of the FGF pathway are involved in epithelial-mesenchymal interactions remains largely unknown. Miniature pigs exhibit tooth anatomy and replacement patterns like those in humans and hence can serve as large animal models. The present study investigated the spatiotemporal expression patterns of critical genes encoding FGF ligands (FGF3, FGF4, FGF7, and FGF9), antagonists (SPRY2 and SPRY4) and receptors (FGFR1, FGFR2, and FGFR3) in the third deciduous molars of miniature pigs at the cap (embryonic day 40, E40), early bell (E50), and late bell (E60) stages. The results of in situ hybridization (ISH) with tyramide signal amplification and of qRT-PCR analysis revealed increased expression of FGF7, FGFR1, FGFR2, and SPRY4 in dental epithelium and of FGF7 and FGFR1 in mesenchyme from E40 to E50. In contrast, the results revealed decreased expression of FGF3, FGF4, FGF9, and FGFR3 in dental epithelium and of FGF4, FGF9, FGFR2, and FGFR3 in the mesenchyme from E40 to E60. Mesenchyme signals of FGF3, FGF4, FGF7, SPRY2, FGFR2, and FGFR3 were concentrated in the odontoblast layer from E50 to E60. The distinct expression patterns of these molecules indicated elaborate regulation during dental morphogenesis. Our results provide a foundation for further investigation into fine-tuning dental morphogenesis and odontogenesis by controlling interactions between dental epithelium and mesenchyme, thus promoting tooth regeneration in large mammals.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Diente Molar/metabolismo , Morfogénesis , Odontogénesis , Diente Primario/metabolismo , Animales , Transición Epitelial-Mesenquimal , Factores de Crecimiento de Fibroblastos/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Modelos Animales , Transducción de Señal/genética , Porcinos , Porcinos Enanos
4.
J Prosthet Dent ; 119(3): 363-368, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28689915

RESUMEN

STATEMENT OF PROBLEM: The introduction of polymer-infiltrated ceramic network (PICN) materials may provide more options for dentists in restoring short clinical crowns and extensively damaged posterior teeth, but clinical data for their performance are lacking. PURPOSE: The purpose of this clinical study was to compare the 3-year performance and survival rates of PICN material with those of conservative ceramic onlay restorations for endodontically treated posterior teeth using the CEREC AC chair-side system. MATERIAL AND METHODS: A total of 101 onlay restorations of endodontically treated posterior teeth using the CEREC AC chair-side system were provided in 93 participants. The 101 teeth were divided into 2 groups: Vita Enamic group and Vitablocs Mark II group. Using the modified US Public Health Service quality evaluation system, 2 calibrated evaluators examined the performance of the onlay restorations over 3 years. The Kaplan-Meier method was adopted to analyze the survival rate of restorations (α=.05). The log rank test was used to compare the survival rates of the 2 groups. The Fisher exact test was performed to detect differences in the success rates for extensively damaged teeth and short clinical crown restorations between the 2 groups. The Silness and Löe gingival index was also recorded. RESULTS: The restoration survival rates in the 2 groups were 97.0% (Vita Enamic) and 90.7% (Vitablocs Mark II) (P>.05). Five failures were recorded (4.95%). These failures were caused by restoration debonding (60%), ceramic fractures (20%), and tooth fractures (20%). There were no significant differences between the success rates of restoring extensively damaged teeth and short clinical crowns between the 2 groups (P>.05). The periodontal condition of 25% of participants was improved 3 years after the onlay restorations. CONCLUSIONS: Onlay restorations of endodontically treated posterior teeth with Vita Enamic using the CEREC AC chair-side system are clinically promising prosthodontic alternatives, with a survival rate of 97.0% after 3 years. More research is needed to verify the results of this study.


Asunto(s)
Cerámica , Porcelana Dental , Restauración Dental Permanente/métodos , Incrustaciones , Adolescente , Adulto , Anciano , Diseño Asistido por Computadora , Fracaso de la Restauración Dental , Femenino , Humanos , Masculino , Persona de Mediana Edad , Satisfacción del Paciente , Adulto Joven
5.
Appl Microbiol Biotechnol ; 100(23): 10203-10213, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27709289

RESUMEN

Denitratation (nitrite produced from nitrate), has the potential applications in wastewater treatment by combining with ANAMMOX process. The occurrence of denitratation has been shown to be effected qualitatively by various parameters in the environment. A more quantitative understanding can be obtained using enrichment cultures in lab-scale experiments, yet information on the enrichment of functional microorganisms responsible for denitratation is lacking. In this study, a stable denitratation-dominated culture was obtained from methylotrophic denitrifying culture. The results showed that, besides the substitution of acetate for methanol, the lasting starvation following saturation of electron donor was another pivotal selection pressure that favored the growth of denitratating bacteria, which was supported by the distinctive physiological strategy involving the higher growth rate combining with larger poly-hydroxybutyrate (PHB) accumulation at sufficient electron donor situation and then manage the stress of electron donor starvation by consumpiton of the PHB. High-throughput 16S rRNA gene sequencing analysis indicated that non-methylotrophic Halomonas campisalis (48.1 %) and Halomonas campaniensis (30.4 %) dominated in the denitratating community. Moreover the denitratation was driven by the nitrate inhibiting the nirS transcription in the Halomonas species.


Asunto(s)
Bacterias/clasificación , Metanol/metabolismo , Consorcios Microbianos , Nitratos/metabolismo , Nitritos/metabolismo , Acetatos/metabolismo , Bacterias/genética , Bacterias/crecimiento & desarrollo , Biotransformación , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Transporte de Electrón , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
6.
Bioresour Technol ; 394: 130264, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159816

RESUMEN

Production of mono-phenols through hydrodeoxygenation is one of the most promising routes for value-added lignin valorization. However, the adsorption characteristic of key intermediates and hydrodeoxygenation mechanism of key linkages in lignin have received inadequate attentions. In this paper, experiments combined with density functional theory calculations were done to explore the adsorption and catalytic HDO mechanism of lignin dimers. It was found that NiFe(111)-Mo2C(001) had a better ability on linkages activation, and showed stronger adsorption on CO containing intermediates, which was favor for further hydrodeoxygenation. Moreover, the calculation results certificated the cleavage of ß-O-4 was prior to the hydrodeoxygenation of CO, and the hydrodeoxygenation of ß-O-4 included a H· addition to O atom before the C-O cleavage. Finally, the elementary reactions energy barriers were efficiently reduced by NiFe(111)-Mo2C(001) catalyst during the hydrodeoxygenation reactions, which elucidated the superior performance of NiFe catalyst. This work provides a theoretical basis on efficient lignin utilization.


Asunto(s)
Lignina , Fenoles , Adsorción
7.
Arch Oral Biol ; 163: 105965, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593562

RESUMEN

OBJECTIVE: Porphyromonas gingivalis (P. gingivalis) is a key etiological agent in periodontitis and functions as a facultative intracellular microorganism and involves many virulence factors. These virulence factors participate in multiple intracellular processes, like ferroptosis, the mechanistic underpinnings remain to be elucidated. Aim of this study was to investigate the effects of virulence factors on the host cells. DESIGN: Human umbilical vein endothelial cells (HUVECs) were treated with 4% paraformaldehyde-fixed P. gingivalis, and subsequent alterations in gene expression were profiled via RNA-seq. Further, the molecules associated with ferroptosis were quantitatively analyzed using qRT-PCR and Western blot. RESULTS: A total of 1125 differentially expressed genes (DEGs) were identified, encompassing 225 upregulated and 900 downregulated. Ferroptosis was conspicuously represented in the kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, with notable upregulation of Heme oxygenase 1 (HMOX1), Ferritin light chain (FTL), and Solute carrier family 3 member 2 (SLC3A2) and downregulation of Scavenger receptor class A member 5 (SCARA5) and glutaminase (GLS). Random selection of DEGs for validation through qRT-PCR corroborated the RNA-Seq data (R2 = 0.93). Kelch like ECH associated protein 1 (Keap1) protein expression decreased after 4 and 8 h, while NFE2 like bZIP transcription factor 2 (Nrf2) and HMOX1 were elevated, with significant nuclear translocation of Nrf2. CONCLUSIONS: The virulence factors of P. gingivalis may potentially instigating ferroptosis through activation of the Keap1-Nrf2-HMOX1 signaling cascade, in conjunction with modulating the expression of other ferroptosis-associated elements. Further research is necessary to achieve a thorough comprehension of these complex molecular interactions.


Asunto(s)
Ferroptosis , Células Endoteliales de la Vena Umbilical Humana , Porphyromonas gingivalis , Factores de Virulencia , Porphyromonas gingivalis/patogenicidad , Porphyromonas gingivalis/genética , Ferroptosis/genética , Humanos , Factores de Virulencia/genética , Regulación hacia Arriba , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Western Blotting , Regulación hacia Abajo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo
8.
Stem Cells Dev ; 33(9-10): 239-248, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38573004

RESUMEN

Replacement teeth develop from the successional dental lamina (SDL). Understanding how SDL transitions from quiescence to initiation is crucial for preserving dental lamina stem cells in the jawbone microenvironment and for complete tooth regeneration. Miniature pigs are good models for studying human tooth replacement because of their similarities to humans. However, the molecular mechanisms and cellular composition that initiate SDL development remain unclear. One possible reason for this is the limitations of the current methods for culturing SDL in vitro, such as the inability to directly observe tooth morphological changes during culture and low tissue viability. This study aimed to improve the in vitro culture method for SDL. Using a McIlwain Tissue Chopper, we obtained mandibular slices containing deciduous canine and SDL of permanent canine. The slices were approximately 500 µm thick and were cultured on a Transwell membrane supported with metal grids over medium. The SDL developed into the bud stage on the second day and entered the cap stage on the fifth day in vitro. The expression of proliferation markers, cell death markers, and key odontogenetic genes in vitro was similar to that observed in vivo. In conclusion, we successfully applied a slice culture system to the SDL of miniature pigs. This slice culture method allowed us to directly visualize SDL initiation and further elucidate the molecular mechanisms underlying the initiation of permanent tooth development.


Asunto(s)
Técnicas de Cultivo , Diente Canino , Mandíbula , Embarazo , Animales , Porcinos Enanos , Técnicas de Cultivo/métodos , Diente Canino/citología , Diente Canino/crecimiento & desarrollo , Mandíbula/citología , Proliferación Celular , Apoptosis , Diente Primario/citología , Embrión de Mamíferos/citología
9.
RNA ; 17(4): 603-12, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21321186

RESUMEN

Delivering small interfering RNA (siRNA) to tumors is the major technical hurdle that prevents the advancement of siRNA-based cancer therapy. One of the difficulties associated with the development of clinically relevant delivery systems is the lack of reliable tools for monitoring siRNA delivery to tumors in vivo. We describe here a novel, positive-readout system where siRNA-mediated target knockdown elicits a rapid and robust increase of reporter activity. Using the positive-readout system, we created (1) ß-galactosidase-based tumor models that allow the detection of target knockdown in 1%-2% of tumor cells and can distinguish between tumor areas where effective target knockdown occurs versus tumor areas that are not accessible to delivery, and (2) luciferase-based tumor models that allow the quantitative assessment of a large number of delivery systems. Using these positive-readout models, we screened a number of literature-described siRNA delivery systems and identified lipid nanoparticles as a promising delivery platform for siRNA-based cancer therapy.


Asunto(s)
Técnicas de Silenciamiento del Gen , Monitoreo Fisiológico/métodos , Neoplasias/terapia , ARN Interferente Pequeño/administración & dosificación , Animales , Secuencia de Bases , Línea Celular Tumoral , Femenino , Genes Reporteros , Vectores Genéticos , Liposomas , Ratones , Ratones SCID , Datos de Secuencia Molecular , Nanopartículas/administración & dosificación , ARN Interferente Pequeño/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , beta-Galactosidasa/genética
10.
J Hazard Mater ; 422: 126940, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34419850

RESUMEN

The purpose of this study was to fabricate quaternized polyethylenimine-cellulose fibers (QPCFs) for the fast recovery of Au(I) from alkaline e-waste leachate. QPCFs were prepared by quaternizing PEI-modified cellulose fibers using a (3-chloro-2-hydroxypropyl)trimethylammonium chloride solution. The maximum Au(I) adsorption capacity of QPCFs was estimated to be 109.87 ± 3.67 mg/g at pH 9.5 using the Langmuir model. The values of k1 and k2 calculated by the pseudo-first and pseudo-second-order models were 1.79 ± 0.15 min-1 and 0.045 ± 0.003 g/mg min, respectively. Adsorption equilibrium was reached within 5 min. Thermodynamic studies revealed that the Au(I) adsorption process by the QPCFs was spontaneous (ΔG° < 0) and exothermic (ΔH° < 0). The characterization and adsorption mechanism of QPCFs were investigated by Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectrometry. Quaternary amine sites were well developed in the QPCFs. Oxidation or reduction of adsorbed Au(I) was not observed. When QPCFs were applied to the solution obtained by bioleaching of e-waste, the recovery efficiencies of Au and Cu were 61.7 ± 3.1% and 11.1 ± 2.9%, respectively, indicating that QPCFs have Au selectivity. Therefore, QPCFs are suitable for actual wastewater applications because of their high adsorption performance and fast adsorption rate.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Adsorción , Celulosa , Concentración de Iones de Hidrógeno , Cinética , Polietileneimina , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Contaminantes Químicos del Agua/análisis
11.
Front Cell Dev Biol ; 10: 921364, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035997

RESUMEN

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) belongs to the long non-coding RNA (LncRNA) family. LncRNA-MALAT1 is expressed in a variety of tissues and is involved in a variety of diseases and biological processes. Although LncRNA-MALAT1 is upregulated in a high-glucose microenvironment and may participate in odontogenic differentiation, the underlying mechanism is not yet well elucidated. Here, we show that MALAT1 was mainly expressed in the cytoplasm of dental pulp cells (DPCs) in situ hybridization. In addition, high levels of mineralization-related factors, namely, tumor growth factors ß 1 and 2 (TGFß-1 and TGFß-2), bone morphogenetic proteins 2 and 4 (BMP2 and BMP4), bone morphogenetic protein receptor 1 (BMPR1), SMAD family member 2 (SMAD2), runt-related transcription factor 2 (RUNX2), Msh homeobox 2 (MSX2), transcription factor SP7 (SP7), alkaline phosphatase (ALP), dentin matrix acidic phosphoprotein 1 (DMP1), and dentin sialophosphoprotein (DSPP), were expressed, and MALAT1 was significantly overexpressed in DPCs 7 and 14 days after mineralization induction in a high-glucose microenvironment, but only TGFß-1, BMP2, MSX2, SP7, ALP, and DSPP were significantly downregulated in DPCs after MALAT1 inhibition. MALAT1 may participate in the mineralization process of DPCs by regulating multiple factors (TGFß-1, BMP2, MSX2, SP7, ALP, and DSPP).

12.
Bioresour Technol ; 321: 124503, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33310408

RESUMEN

Lignin is an abundant renewable source of bio-aromatics and its valorization is of great importance. In this work, an efficient non-precious carbon based metal-Mo2C catalytic system for selective production of phenolic monomers (PMs) from organosolv lignin depolymerization is proposed. With the optimized catalyst of Ni-Fe-Mo2C, 89.56% of liquefaction and 35.53% of PMs yields were achieved under 260 ℃ for 4 h with water-methanol (4:1 v/v) solvent. Characterization of the catalysts shows that the induction of Ni-Fe species was favor for the formation of ß-Mo2C, and efficiently promoted the lignin liquefaction. The decoration of Ni/Fe can also change the side chain hydrogenolysis ability of the catalyst and exhibite high yield for 4-ethylphenol (14.77%) production. Methanol, used as co-solvent, was found to play an important role in PMs production and lignin depolymerization. These results demonstrated that the Ni-Fe-Mo2C catalytic system has potential to produce valuable phenolic monomers from lignin under mild conditions.


Asunto(s)
Lignina , Níquel , Carbono , Catálisis , Hierro , Molibdeno
13.
Arch Oral Biol ; 113: 104691, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32247880

RESUMEN

INTRODUCTION: Angiogenesis is important in pulp-dentin formation. Among the regulatory factors, long noncoding RNA (LncRNA) is a class of functional RNA molecules that are not translated into protein and involved in regulating multiple physiological processes. The different expression of LncRNA and its target gene in dental pulp stem cells (DPSCs) were explored and may provide a theoretical basis for future regulation of dental pulp angiogenesis. METHODS: In this study, we cultured DPSCs from healthy dental pulp tissues and divided them into two groups: the normal DPSCs and the DPSCs cultured in vascular induction medium. In total, 40,173 LncRNA probes and 20,730 protein coding mRNAs were detected through microarray, which were then verified by the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) method. RESULTS: The result of differential expressions measured in LncRNA through microarray showed that 376 LncRNAs increased significantly and 426 were downregulated among the two groups of cells. Moreover, the mRNA microarray in normal cultured DPSCs showed that 629 LncRNAs were significantly upregulated, while 529 of them were downregulated compared with the DPSCs that were cultured in vascular induction medium. Gene ontology (GO) analysis inferred the molecular function of mRNAs. Pathway analysis showed that 52 signaling pathways were involved in the differentiation process of DPSCs. qRT-PCR analysis, conducted for validation, showed results consistent with the microarray analysis. CONCLUSIONS: We found that a number of different regulators are involved in inducing vascular differentiation of DPSCs, which provides a foundation for subsequent experiments.


Asunto(s)
Pulpa Dental/citología , Neovascularización Fisiológica , ARN Largo no Codificante/metabolismo , Células Madre/metabolismo , Diferenciación Celular , Células Cultivadas , Humanos , ARN Mensajero
14.
Trials ; 20(1): 454, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31340845

RESUMEN

BACKGROUND: After root canal treatment, most tooth defects need to be restored. Onlay restoration is widely used to restore dental defects. Endocrown is a new type of onlay; however, dentists have yet to obtain a full understanding of the clinical effects of marginal forms of endocrowns. Here, we present a multicenter protocol to compare the clinical efficacy of two marginal forms (flat and 90-degree shoulder) for tooth restoration. The efficacy will be evaluated by marginal fit, marginal discoloration, and integrity of restoration. METHODS: The proposed flat and 90-degree shoulder marginal endocrown assessment trial is an open-label, parallel-group, multicenter randomized controlled trial involving two hospitals. A total of 200 patients will be included in this trial, and the following patient inclusion criteria will be applied: good oral hygiene habits, no periodontal diseases, receipt of standard root canal treatment, and need for endocrown restoration. Patients will be enrolled after providing signed informed consent and will be divided into two groups (flat and 90-degree shoulder endocrown) in accordance with a random number table. Treatment allocation will be balanced (1:1). Endocrowns will be cemented by dual-cured luting composite. Clinical evaluations will be performed at baseline and at 24 months after treatment in accordance with modified US Public Health Service criteria by two independent evaluators. The primary outcome will be marginal fit; secondary outcome measures will include debonding, marginal discoloration, and integrity of restoration. All acquired data will be analyzed by an independent statistician. Wilcoxon one-sample tests will be used for intra-group comparisons, and Wilcoxon two-sample tests will be used for inter-group comparisons. The Bonferroni method will be used to correct for multiple comparisons, and hierarchical logistic regression will be applied to determine central effects. DISCUSSION: The results of this trial will provide a clinical basis for clinicians to restore teeth by endocrowns and to improve long-term restoration for patients. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT03398395. Registered on 12 January 2018.


Asunto(s)
Coronas , Restauración Dental Permanente/métodos , Tratamiento del Conducto Radicular , Adolescente , Adulto , China , Diseño de Prótesis Dental , Estudios de Equivalencia como Asunto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Multicéntricos como Asunto , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA