Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Appl Environ Microbiol ; 79(12): 3770-8, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23584789

RESUMEN

Plants represent a large reservoir of organic carbon comprised primarily of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous fungus that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and, using genomic and metaproteomic tools, we investigate its role in lignocellulose degradation in the gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in ant gardens and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that likely play an important role in lignocellulose degradation. Our study provides a detailed analysis of plant biomass degradation in leaf-cutter ant fungus gardens and insight into the enzymes underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.


Asunto(s)
Agaricales/enzimología , Hormigas/fisiología , Celulasas/genética , Genoma Fúngico/genética , Simbiosis/fisiología , Agaricales/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Celulasas/metabolismo , Análisis por Conglomerados , Herbivoria/fisiología , Lignina/metabolismo , Datos de Secuencia Molecular , Panamá , Filogenia , Plantas/metabolismo , Proteómica , Análisis de Secuencia de ADN , Homología de Secuencia , Especificidad de la Especie
2.
J Proteome Res ; 10(10): 4365-72, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21678892

RESUMEN

Efficient deconstruction of cellulosic biomass to fermentable sugars for fuel and chemical production is accomplished by a complex mixture of cellulases, hemicellulases, and accessory enzymes (e.g., >50 extracellular proteins). Cellulolytic enzyme mixtures, produced industrially mostly using fungi like Trichoderma reesei, are poorly characterized in terms of their protein composition and its correlation to hydrolytic activity on cellulosic biomass. The secretomes of commercial glycosyl hydrolase-producing microbes was explored using a proteomics approach with high-throughput quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Here, we show that proteomics-based spectral counting approach is a reasonably accurate and rapid analytical technique that can be used to determine protein composition of complex glycosyl hydrolase mixtures that also correlates with the specific activity of individual enzymes present within the mixture. For example, a strong linear correlation was seen between Avicelase activity and total cellobiohydrolase content. Reliable, quantitative and cheaper analytical methods that provide insight into the cellulosic biomass degrading fungal and bacterial secretomes would lead to further improvements toward commercialization of plant biomass-derived fuels and chemicals.


Asunto(s)
Celulasa/química , Glicósido Hidrolasas/química , Proteómica/métodos , Trichoderma/enzimología , Biomasa , Técnicas de Química Analítica/métodos , Cromatografía Liquida/métodos , Etanol/química , Fermentación , Proteínas Fúngicas/química , Hidrolasas/química , Hidrólisis , Lignina/química , Espectrometría de Masas/métodos , Trichoderma/química
3.
Environ Microbiol ; 13(4): 1018-31, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21251176

RESUMEN

The composition of extracellular polymeric substances (EPS) from Shewanella sp. HRCR-1 biofilms was investigated using infrared spectroscopy and proteomics to provide insight into potential ecophysiological functions and redox activity of the EPS. Both bound and loosely associated EPS were extracted from Shewanella sp. HRCR-1 biofilms prepared using a hollow-fibre membrane biofilm reactor. Fourier transform infrared spectra revealed the presence of proteins, polysaccharides, nucleic acids, membrane lipids and fatty acids in the EPS fractions. Using a global proteomic approach, a total of 58 extracellular and outer membrane proteins were identified in the EPS. These included homologues of multiple Shewanella oneidensis MR-1 proteins that potentially contribute to key physiological biofilm processes, such as biofilm-promoting protein BpfA, surface-associated serine protease, nucleotidases (CpdB and UshA), an extracellular lipase, and oligopeptidases (PtrB and a M13 family oligopeptidase lipoprotein). In addition, 20 redox proteins were found in extracted EPS. Among the detected redox proteins were the homologues of two S. oneidensis MR-1 c-type cytochromes, MtrC and OmcA, which have been implicated in extracellular electron transfer. Given their detection in the EPS of Shewanella sp. HRCR-1 biofilms, c-type cytochromes may contribute to the possible redox activity of the biofilm matrix and play important roles in extracellular electron transfer reactions.


Asunto(s)
Biopelículas , Espacio Extracelular/química , Polímeros/química , Shewanella/química , Proteínas Bacterianas/análisis , Reactores Biológicos , Cromatografía Liquida , Grupo Citocromo c/química , Transporte de Electrón , Proteínas de la Membrana/análisis , Oxidación-Reducción , Proteómica , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría de Masas en Tándem
4.
Anal Chem ; 83(19): 7260-8, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21740036

RESUMEN

The c-type cytochromes play essential roles in many biological activities of both prokaryotic and eukaryotic cells, including electron transfer, enzyme catalysis, and induction of apoptosis. We report a novel enrichment strategy for identifying c-type heme-containing peptides that uses nonactivated IMAC resin. The strategy demonstrated at least 7-fold enrichment for heme-containing peptides digested from a cytochrome c protein standard, and quantitative linear performance was also assessed for heme-containing peptide enrichment. Heme-containing peptides extracted from the periplasmic fraction of Shewanella oneidensis MR-1 were further identified using higher-energy collisional dissociation tandem mass spectrometry. The results demonstrated the applicability of this enrichment strategy to identify c-type heme-containing peptides from a highly complex biological sample and, at the same time, confirmed the periplasmic localization of heme-containing proteins during suboxic respiration activities of S. oneidensis MR-1.


Asunto(s)
Grupo Citocromo c/análisis , Metales/química , Resinas Sintéticas/química , Animales , Bovinos , Cromatografía de Afinidad , Cromatografía Liquida , Caballos , Metales/metabolismo , Fragmentos de Péptidos/análisis , Proteómica , Shewanella/enzimología , Espectrometría de Masas en Tándem
5.
Nat Microbiol ; 4(5): 864-875, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30858574

RESUMEN

Beneficial microbial associations enhance the fitness of most living organisms, and wood-feeding insects offer some of the most striking examples of this. Odontotaenius disjunctus is a wood-feeding beetle that possesses a digestive tract with four main compartments, each of which contains well-differentiated microbial populations, suggesting that anatomical properties and separation of these compartments may enhance energy extraction from woody biomass. Here, using integrated chemical analyses, we demonstrate that lignocellulose deconstruction and fermentation occur sequentially across compartments, and that selection for microbial groups and their metabolic pathways is facilitated by gut anatomical features. Metaproteogenomics showed that higher oxygen concentration in the midgut drives lignocellulose depolymerization, while a thicker gut wall in the anterior hindgut reduces oxygen diffusion and favours hydrogen accumulation, facilitating fermentation, homoacetogenesis and nitrogen fixation. We demonstrate that depolymerization continues in the posterior hindgut, and that the beetle excretes an energy- and nutrient-rich product on which its offspring subsist and develop. Our results show that the establishment of beneficial microbial partners within a host requires both the acquisition of the microorganisms and the formation of specific habitats within the host to promote key microbial metabolic functions. Together, gut anatomical properties and microbial functional assembly enable lignocellulose deconstruction and colony subsistence on an extremely nutrient-poor diet.


Asunto(s)
Bacterias/aislamiento & purificación , Escarabajos/microbiología , Microbioma Gastrointestinal , Lignina/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Escarabajos/metabolismo , Fermentación , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Hidrógeno/metabolismo , Oxígeno/metabolismo , Filogenia , Madera/metabolismo , Madera/microbiología
6.
ISME J ; 11(3): 691-703, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27959345

RESUMEN

Ruminants have co-evolved with their gastrointestinal microbial communities that digest plant materials to provide energy for the host. Some arctic and boreal ruminants have already shown to be vulnerable to dietary shifts caused by changing climate, yet we know little about the metabolic capacity of the ruminant microbiome in these animals. Here, we use meta-omics approaches to sample rumen fluid microbial communities from Alaskan moose foraging along a seasonal lignocellulose gradient. Winter diets with increased hemicellulose and lignin strongly enriched for BS11, a Bacteroidetes family lacking cultivated or genomically sampled representatives. We show that BS11 are cosmopolitan host-associated bacteria prevalent in gastrointestinal tracts of ruminants and other mammals. Metagenomic reconstruction yielded the first four BS11 genomes; phylogenetically resolving two genera within this previously taxonomically undefined family. Genome-enabled metabolic analyses uncovered multiple pathways for fermenting hemicellulose monomeric sugars to short-chain fatty acids (SCFA), metabolites vital for ruminant energy. Active hemicellulosic sugar fermentation and SCFA production was validated by shotgun proteomics and rumen metabolites, illuminating the role BS11 have in carbon transformations within the rumen. Our results also highlight the currently unknown metabolic potential residing in the rumen that may be vital for sustaining host energy in response to a changing vegetative environment.


Asunto(s)
Bacteroidetes/metabolismo , Ciervos/microbiología , Microbioma Gastrointestinal , Polisacáridos/metabolismo , Rumen/microbiología , Animales , Regiones Árticas , Bacterias/clasificación , Bacteroidetes/clasificación , Cambio Climático , Ciervos/clasificación , Digestión , Ácidos Grasos Volátiles/metabolismo , Fermentación , Lignina/metabolismo , Metagenómica/métodos , Filogenia , Estaciones del Año
7.
PLoS One ; 10(12): e0143809, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26629814

RESUMEN

Fibrobacter succinogenes S85 is an anaerobic non-cellulosome utilizing cellulolytic bacterium originally isolated from the cow rumen microbial community. Efforts to elucidate its cellulolytic machinery have resulted in the proposal of numerous models which involve cell-surface attachment via a combination of cellulose-binding fibro-slime proteins and pili, the production of cellulolytic vesicles, and the entry of cellulose fibers into the periplasmic space. Here, we used a combination of RNA-sequencing, proteomics, and transmission electron microscopy (TEM) to further clarify the cellulolytic mechanism of F. succinogenes. Our RNA-sequence analysis shows that genes encoding type II and III secretion systems, fibro-slime proteins, and pili are differentially expressed on cellulose, relative to glucose. A subcellular fractionation of cells grown on cellulose revealed that carbohydrate active enzymes associated with cellulose deconstruction and fibro-slime proteins were greater in the extracellular medium, as compared to the periplasm and outer membrane fractions. TEMs of samples harvested at mid-exponential and stationary phases of growth on cellulose and glucose showed the presence of grooves in the cellulose between the bacterial cells and substrate, suggesting enzymes work extracellularly for cellulose degradation. Membrane vesicles were only observed in stationary phase cultures grown on cellulose. These results provide evidence that F. succinogenes attaches to cellulose fibers using fibro-slime and pili, produces cellulases, such as endoglucanases, that are secreted extracellularly using type II and III secretion systems, and degrades the cellulose into cellodextrins that are then imported back into the periplasm for further digestion by ß-glucanases and other cellulases.


Asunto(s)
Celulosa/metabolismo , Fibrobacter/metabolismo , Modelos Biológicos , Adhesión Bacteriana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fibrobacter/citología , Fibrobacter/genética , Fibrobacter/fisiología , Proteínas Fimbrias/metabolismo , Periplasma/metabolismo , Proteómica , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA