Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 120(8): 2333-2344, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37288610

RESUMEN

Au nanorods (AuNRs) have attracted considerable interest as drug delivery systems because of their enhanced cell internalization and stronger drug-loading ability. In addition, the incorporation of photodynamic therapy (PDT) and photothermal therapy (PTT) into one nanosystem presents great promise to defect multiple drawbacks in cancer therapy. Herein, we fabricated a multifunctional and dual-targeting nanoplatform based on hyaluronic acid-grafted-(mPEG/triethylenetetramine-conjugated-lipoic acid/tetra(4-carboxyphenyl)porphyrin/folic acid) polymer ligand capped AuNRs (AuNRs@HA-g-(mPEG/Teta-co-(LA/TCPP/FA)) for combined photodynamic-photothermal therapy of cancer. The prepared nanoparticles displayed high TCPP loading capacity and excellent stability in different biological media. Furthermore, AuNRs@HA-g-(mPEG/Teta-co-(LA/TCPP/FA)) not only could produce a localized hyperthermia to conduct PTT, but also generate cytotoxic singlet oxygen (1 O2 ) to perform PDT under laser irradiation. Confocal imaging results disclosed that this nanoparticle endowing the specific function of polymeric ligand could enhance cellular uptake, accelerate endo/lysosomal escape, as well as produce higher reactive oxygen species. Importantly, this combination therapy strategy could also induce higher anticancer potential than PDT or PTT only against MCF-7 tumor cells in vitro. Therefore, this work presented an AuNRs-based therapeutic nanoplatform with great potential in dual-targeting and photo-induced combination therapy of cancer.


Asunto(s)
Nanopartículas , Nanotubos , Neoplasias , Fotoquimioterapia , Humanos , Ácido Hialurónico , Oro/farmacología , Terapia Fototérmica , Ligandos , Polímeros , Lisosomas , Línea Celular Tumoral
2.
Colloids Surf B Biointerfaces ; 228: 113395, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37327654

RESUMEN

In this study, unique hypoxia-activated hyaluronic acid nanogels (HANGs) were reported for CD44-targeted delivery of photosensitizers (chlorin e6, Ce6) for diagnostic imaging and photodynamic therapy (PDT) of cancers. Through the use of a hypoxia-responsive cross-linker (AZO-CDI), the HANGs were prepared by chemically cross-linking primary amine groups-functionalized hyaluronic acid (HA). Under normoxic condition, fluorescence of Ce6 conjugated on the HANGs was highly quenched, and level of reactive oxygen species (ROS) generated from the HANGs was rather low after laser irradiation. However, under hypoxic condition, the HANGs underwent rapid disassociation, and fluorescence of Ce6 conjugated on the HANGs was recovered, triggering high-level singlet oxygen generation after laser irradiation. Due to the presence of HA, the HANGs showed much higher cellular uptake by CD44-positive cancer cells (A549 cells) than that by CD44-negative cancer cells (HepG2 cells). In addition, the HANGs could generate higher level of ROS in A549 cells because of improved cancer cell uptake. This excellent tumor-targeting and singlet oxygen-generating ability of the HANGs was favorable to hypoxia-activated PDT of CD44-positive cancers with significant inhibition of tumor growth within the whole treatment period. Taken together, the HANGs are safe and effective tools in treating CD44-positive cancers.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Fotoquimioterapia/métodos , Nanogeles , Ácido Hialurónico/farmacología , Especies Reactivas de Oxígeno , Oxígeno Singlete , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología , Porfirinas/farmacología , Línea Celular Tumoral , Receptores de Hialuranos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA