Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Anal Chem ; 93(38): 12987-12994, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34520172

RESUMEN

Process analysis of heterogeneous catalytic reactions such as lignin depolymerization is essential to understand the reaction mechanism at the molecular level, but it is always challenging due to harsh conditions. Herein, we report an operando process analysis strategy by combining a microbatch reactor with high-resolution mass spectrometry (MS) via a reactor-integrated electrospray ionization (R-ESI) technique. R-ESI-MS expands the applications of traditional in situ MS to a heterogeneous and high-pressure liquid-phase system. With this strategy, we present the evolution of a series of monomers, dimers, and oligomers during lignin depolymerization under operando conditions (methanol solvent, 260 °C, ∼8 MPa), which is the first experimental elucidation of a progressive depolymerization pathway and evidence of repolymerization of active monomers. The proposed R-ESI-MS is crucial in probing depolymerization intermediates of lignin; it also provides a flexible strategy for process analysis of heterogeneous catalytic reactions under operando conditions.


Asunto(s)
Lignina , Espectrometría de Masa por Ionización de Electrospray , Catálisis , Metanol , Solventes
2.
Bioresour Technol ; 275: 130-137, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30580234

RESUMEN

The hydrogen-deficient and oxygen-rich nature of lignocellulosic biomass prohibits effective conversions of biomass to fuels and chemicals via catalytic pyrolysis due to significant coking of the catalysts. Co-feeding of biomass feedstock with hydrogen-rich and oxygen-deficient thermoplastics could improve the process. Herein, thermal and catalytic co-pyrolysis of cellulose and polyethylene (PE) was studied via thermogravimetry combined with an online photoionization time-of-flight mass spectrometry (PI-TOF-MS). No notable synergetic effect was found in the thermal co-pyrolysis process while a considerable synergetic effect was observed during the catalytic co-pyrolysis. In the case of catalytic pyrolysis, co-feeding of cellulose with PE significantly improved the aromatic formation. Detailed reaction intermediates and products were detected by PI-TOF-MS and the process of aromatization could be ascribed to aromatization of small oxygenates and olefins, as well as Diels-Alder reaction and dehydration by HZSM-5. Moreover, this study provides a reliable tool for screening and optimizing of catalytic co-pyrolysis.


Asunto(s)
Celulosa/química , Polietileno/química , Zeolitas/química , Biomasa , Catálisis , Calor , Iones/química , Espectrometría de Masas , Procesos Fotoquímicos , Pirólisis , Termogravimetría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA