Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Vet Res ; 44: 48, 2013 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-23826638

RESUMEN

Foot-and-mouth disease virus (FMDV) causes a highly contagious infection in cloven-hoofed animals. The format of FMD virus-like particles (VLP) as a non-replicating particulate vaccine candidate is a promising alternative to conventional inactivated FMDV vaccines. In this study, we explored a prokaryotic system to express and assemble the FMD VLP and validated the potential of VLP as an FMDV vaccine candidate. VLP composed entirely of FMDV (Asia1/Jiangsu/China/2005) capsid proteins (VP0, VP1 and VP3) were simultaneously produced as SUMO fusion proteins by an improved SUMO fusion protein system in E. coli. Proteolytic removal of the SUMO moiety from the fusion proteins resulted in the assembly of VLP with size and shape resembling the authentic FMDV. Immunization of guinea pigs, swine and cattle with FMD VLP by intramuscular inoculation stimulated the FMDV-specific antibody response, neutralizing antibody response, T-cell proliferation response and secretion of cytokine IFN-γ. In addition, immunization with one dose of the VLP resulted in complete protection of these animals from homologous FMDV challenge. The 50% protection dose (PD50) of FMD VLP in cattle is up to 6.34. These results suggest that FMD VLP expressed in E. coli are an effective vaccine in guinea pigs, swine and cattle and support further development of these VLP as a vaccine candidate for protection against FMDV.


Asunto(s)
Bovinos/inmunología , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/inmunología , Cobayas/inmunología , Porcinos/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Vacunas Virales/inmunología , Animales , Proteínas de la Cápside/inmunología , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Fiebre Aftosa/virología , Proteína SUMO-1/metabolismo , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas Virales/administración & dosificación
2.
PLoS One ; 10(7): e0132384, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26161868

RESUMEN

Stable isotope labeling with amino acids in cell culture (SILAC) was used to quantitatively study the host cell gene expression profile, in order to achieve an unbiased overview of the protein expression changes in BHK-21 cells infected with FMDV serotype Asia 1. The SILAC-based approach identified overall 2,141 proteins, 153 of which showed significant alteration in the expression level 6 h post FMDV infection (57 up-regulated and 96 down-regulated). Among these proteins, six cellular proteins, including three down-regulated (VPS28, PKR, EVI5) and three up-regulated (LYPLA1, SEC62 and DARs), were selected according to the significance of the changes and/or the relationship with PKR. The expression level and pattern of the selected proteins were validated by immunoblotting and confocal microscopy. Furthermore, the functions of these cellular proteins were assessed by small interfering RNA-mediated depletion, and their functional importance in the replication of FMDV was demonstrated by western blot, reverse transcript PCR (RT-PCR) and 50% Tissue Culture Infective Dose (TCID50). The results suggest that FMDV infection may have effects on the expression of specific cellular proteins to create more favorable conditions for FMDV infection. This study provides novel data that can be utilized to understand the interactions between FMDV and the host cell.


Asunto(s)
Virus de la Fiebre Aftosa/fisiología , Fiebre Aftosa/virología , Proteómica/métodos , Animales , Western Blotting , Línea Celular , Cromatografía Liquida , Biología Computacional , Regulación hacia Abajo , Virus de la Fiebre Aftosa/genética , Técnicas de Silenciamiento del Gen , Genes Virales , Immunoblotting , Marcaje Isotópico , Espectrometría de Masas , Redes y Vías Metabólicas , Proteoma/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Reproducibilidad de los Resultados , Fracciones Subcelulares/metabolismo , Factores de Tiempo , Transfección , Regulación hacia Arriba , Proteínas Virales/metabolismo
3.
PLoS One ; 10(5): e0125828, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25946195

RESUMEN

Viroporins are a family of low-molecular-weight hydrophobic transmembrane proteins that are encoded by various animal viruses. Viroporins form transmembrane pores in host cells via oligomerization, thereby destroying cellular homeostasis and inducing cytopathy for virus replication and virion release. Among the Picornaviridae family of viruses, the 2B protein encoded by enteroviruses is well understood, whereas the viroporin activity of the 2B protein encoded by the foot-and-mouth disease virus (FMDV) has not yet been described. An analysis of the FMDV 2B protein domains by computer-aided programs conducted in this study revealed that this protein may contain two transmembrane regions. Further biochemical, biophysical and functional studies revealed that the protein possesses a number of features typical of a viroporin when it is overexpressed in bacterial and mammalian cells as well as in FMDV-infected cells. The protein was found to be mainly localized in the endoplasmic reticulum (ER), with both the N- and C-terminal domains stretched into the cytosol. It exhibited cytotoxicity in Escherichia coli, which attenuated 2B protein expression. The release of virions from cells infected with FMDV was inhibited by amantadine, a viroporin inhibitor. The 2B protein monomers interacted with each other to form both intracellular and extracellular oligomers. The Ca(2+) concentration in the cells increased, and the integrity of the cytoplasmic membrane was disrupted in cells that expressed the 2B protein. Moreover, the 2B protein induced intense autophagy in host cells. All of the results of this study demonstrate that the FMDV 2B protein has properties that are also found in other viroporins and may be involved in the infection mechanism of FMDV.


Asunto(s)
Autofagia/genética , Membrana Celular/metabolismo , Virus de la Fiebre Aftosa/metabolismo , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas Reguladoras y Accesorias Virales/antagonistas & inhibidores , Amantadina/farmacología , Animales , Calcio/metabolismo , Línea Celular , Permeabilidad de la Membrana Celular , Cricetinae , Retículo Endoplásmico/virología , Escherichia coli/virología , Virus de la Fiebre Aftosa/genética , Humanos , Estructura Terciaria de Proteína , Liberación del Virus/efectos de los fármacos , Replicación Viral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA