RESUMEN
Pineapple color yellowing and quality promotion gradually manifest as pineapple fruit ripening progresses. To understand the molecular mechanism underlying yellowing in pineapples during ripening, coupled with alterations in fruit quality, comprehensive metabolome and transcriptome investigations were carried out. These investigations were conducted using pulp samples collected at three distinct stages of maturity: young fruit (YF), mature fruit (MF), and fully mature fruit (FMF). This study revealed a noteworthy increase in the levels of total phenols and flavones, coupled with a concurrent decline in lignin and total acid contents as the fruit transitioned from YF to FMF. Furthermore, the analysis yielded 167 differentially accumulated metabolites (DAMs) and 2194 differentially expressed genes (DEGs). Integration analysis based on DAMs and DEGs revealed that the biosynthesis of plant secondary metabolites, particularly the flavonol, flavonoid, and phenypropanoid pathways, plays a pivotal role in fruit yellowing. Additionally, RNA-seq analysis showed that structural genes, such as FLS, FNS, F3H, DFR, ANR, and GST, in the flavonoid biosynthetic pathway were upregulated, whereas the COMT, CCR, and CAD genes involved in lignin metabolism were downregulated as fruit ripening progressed. APX as well as PPO, and ACO genes related to the organic acid accumulations were upregulated and downregulated, respectively. Importantly, a comprehensive regulatory network encompassing genes that contribute to the metabolism of flavones, flavonols, lignin, and organic acids was proposed. This network sheds light on the intricate processes that underlie fruit yellowing and quality alterations. These findings enhance our understanding of the regulatory pathways governing pineapple ripening and offer valuable scientific insight into the molecular breeding of pineapples.
Asunto(s)
Ananas , Flavonas , Frutas/genética , Frutas/metabolismo , Transcriptoma , Ananas/metabolismo , Lignina/metabolismo , Metabolómica , Flavonoides/metabolismo , Flavonas/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
In this study, a novel porphyrin-based porous organic polymer (POP) was constructed using 5,10,15,20-tetramine (4-aminophenyl) porphyrin (TAPP) and 5,5'-diformyl-2,2'-bipyridine (DPDD) as organic ligands via a solvothermal method (represented as TAPP-DPDD-POP). Then, it was utilized as a bifunctional scaffold for constructing a sensitive sensing strategy toward the nucleocapsid phosphoprotein (N-gene) of SARS-CoV-2. The obtained TAPP-DPDD-POP is composed of nanospheres with a size of 100-300 nm and possesses a highly conjugated and π-π stacking network. The coexistence of the porphyrin and bipyridine moieties of TAPP-DPDD-POP afforded considerable electrochemical activity and a strong binding interaction toward the SARS-CoV-2 N-gene-targeted antibody and targeted the aptamer strands of the N-gene. The TAPP-DPDD-POP-based aptasensor and immunosensor were manufactured for the sensitive analysis of SARS-CoV-2 N-gene, and exhibited the limit of detection (LOD) of 0.59 fg mL-1 and 0.17 fg mL-1, respectively, within the range of 0.1 fg mL-1 to 1 ng mL-1 of N-gene. The sensing performances of both the TAPP-DPDD-POP-based aptasensor and immunosensor were better than those of existing electrochemical biosensors for analyzing the N-gene, accompanied with excellent stability, high selectivity and reproducibility. The TAPP-DPDD-POP-based aptasensor and immunosensor were then employed to detect the N-gene from various environments, including human serum, river water, and seafoods. This work provides a new method of using an electrochemically active POP to sensitively and selectively analyze SARS-CoV-2 in diverse environments.
Asunto(s)
Técnicas Biosensibles/métodos , COVID-19/diagnóstico , Proteínas de la Nucleocápside de Coronavirus/análisis , Técnicas Electroquímicas/métodos , Polímeros/química , Porfirinas/química , SARS-CoV-2/aislamiento & purificación , COVID-19/virología , Humanos , Límite de Detección , Fosfoproteínas/análisis , Reproducibilidad de los ResultadosRESUMEN
Foot-and-mouth disease virus (FMDV) is a highly contagious and devastating virus that infects cloven-hoofed livestock and various wildlife species. Vaccination is the best measure to prevent FMD. ADDomer, as a kind of non-infectious adenovirus-inspired nanoparticle, has the advantage of high thermal stability. In this study, two dominant B-cell antigen epitopes (residues 129~160 and 200~213) and a dominant T-cell antigen epitope (residues 16~44) of type O FMDV were inserted into the ADDomer variable loop (VL) and arginine-glycine-aspartic acid (RGD) loop. The 3D structure of the recombinant protein (ADDomer-RBT) was simulated by homology modeling. First, the recombinant proteins were expressed by the baculovirus expression system and detected by western blot and Q Exactive mass spectrometry. Then the formation of VLPs was observed under a transmission electron micrograph (TEM). Finally, we evaluated the immunogenicity of chimeric VLPs with a murine model. Bioinformatic software analysis preliminarily corroborated that the chosen epitopes were successfully exposed on the surface of ADDomer VLPs. The TEM assay demonstrated the structural integrity of the VLPs. After immunizing, it was found that FMDV-specific antibodies can be produced in mice to induce humoral and cellular immune responses. To sum up, the ADDomer platform can be used as an effective antigen carrier to deliver antigen epitopes. This study presents one of the candidate vaccines to prevent and control FMDV.
Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Vacunas Virales , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Proteínas de la Cápside/genética , Epítopos de Linfocito B/genética , Epítopos de Linfocito T/genética , Virus de la Fiebre Aftosa/genética , Ratones , Vacunas Virales/genéticaRESUMEN
OBJECTIVE: To develop a modified presurgical nasoalveolar molding (MPNAM) with a premaxillary appliance, connected with two stainless steel wires and evaluate its therapeutic efficacy in newborns with complete bilateral cleft lip and palate (BCLP). METHOD: A total of 41 patients with neonatal complete BCLP having a severely protruded and deviated premaxilla were retrospectively selected from January 2017 to November 2019. All patients received the MPNAM device with a premaxillary appliance which was worn until cheilorrhaphy. Plaster casts from pre- and post-MPNAM treatments were scanned using a three-dimensional laser scanner, and the changes were recorded. Facial photographs of patients were taken during the treatment. RESULT: The average MPNAM treatment duration was 59.8 days. In all cases, the protrusive and deviated premaxilla was rapidly retracted and set into a suitable position after MPNAM treatment. The relative deviation distance and alveolar cleft width were significantly reduced. Both mid-palatal arch width and posterior arch width were increased. In addition, none of the patients developed any complications during the MPNAM treatment. CONCLUSION: Our MPNAM device was able to rapidly centralize the malpositioned premaxilla and reduce the alveolar cleft defect. This device can be applied in presurgical orthodontic treatments for patients with complete BCLP having a severely protruded and deviated premaxilla.
RESUMEN
Accurate delineation of individual teeth and alveolar bones from dental cone-beam CT (CBCT) images is an essential step in digital dentistry for precision dental healthcare. In this paper, we present an AI system for efficient, precise, and fully automatic segmentation of real-patient CBCT images. Our AI system is evaluated on the largest dataset so far, i.e., using a dataset of 4,215 patients (with 4,938 CBCT scans) from 15 different centers. This fully automatic AI system achieves a segmentation accuracy comparable to experienced radiologists (e.g., 0.5% improvement in terms of average Dice similarity coefficient), while significant improvement in efficiency (i.e., 500 times faster). In addition, it consistently obtains accurate results on the challenging cases with variable dental abnormalities, with the average Dice scores of 91.5% and 93.0% for tooth and alveolar bone segmentation. These results demonstrate its potential as a powerful system to boost clinical workflows of digital dentistry.
Asunto(s)
Procesamiento de Imagen Asistido por Computador , Diente , Inteligencia Artificial , Tomografía Computarizada de Haz Cónico/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Diente/diagnóstico por imagen , Flujo de TrabajoRESUMEN
Lignin is one of the most important components of the plant cell wall, and the expression and transcriptional regulation of lignin biosynthesis-related genes have been studied widely in Arabidopsis and other plants. Citrus fruit juice sacs often undergo lignification, particularly during fruit ripening and storage periods; however, the underlying genetic mechanisms have been little investigated. In this study, we isolated and identified CsMYB330 and CsMYB308 transcription factors, and found that their expression levels are significantly altered during the lignification of citrus fruit juice sacs. We found that CsMYB330 and CsMYB308 can recognize and bind AC elements in the Cs4CL1 promoter and finely regulate expression of the Cs4CL1 gene. In this regulatory process, CsMYB330 was identified as a transcriptional activator, whereas CsMYB308 appears to be a transcriptional repressor. In addition, using a transient assay, we demonstrated that expression of the Cs4CL1 gene is significantly altered in fruit juice sacs overexpressing these two transcription factors. These results indicate that the transcription factors CsMYB330 and CsMYB308 play important roles in the lignification of citrus fruit juice sacs and provide novel insights into the transcriptional regulation associated with fruit juice sac lignification.