Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
EMBO J ; 38(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30523147

RESUMEN

Proper temporal and spatial activation of stem cells relies on highly coordinated cell signaling. The primary cilium is the sensory organelle that is responsible for transmitting extracellular signals into a cell. Primary cilium size, architecture, and assembly-disassembly dynamics are under rigid cell cycle-dependent control. Using mouse incisor tooth epithelia as a model, we show that ciliary dynamics in stem cells require the proper functions of a cholesterol-binding membrane glycoprotein, Prominin-1 (Prom1/CD133), which controls sequential recruitment of ciliary membrane components, histone deacetylase, and transcription factors. Nuclear translocation of Prom1 and these molecules is particularly evident in transit amplifying cells, the immediate derivatives of stem cells. The absence of Prom1 impairs ciliary dynamics and abolishes the growth stimulation effects of sonic hedgehog (SHH) treatment, resulting in the disruption of stem cell quiescence maintenance and activation. We propose that Prom1 is a key regulator ensuring appropriate response of stem cells to extracellular signals, with important implications for development, regeneration, and diseases.


Asunto(s)
Antígeno AC133/metabolismo , Cilios/metabolismo , Incisivo/citología , Antígeno AC133/genética , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Humanos , Incisivo/metabolismo , Ratones , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Transporte de Proteínas , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo
2.
J Anat ; 243(1): 90-99, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36899483

RESUMEN

The Hedgehog pathway gene Gli1 has been proposed to mark a subpopulation of skeletal stem cells (SSCs) in craniofacial bone. Skeletal stem cells (SSCs) are multi-potent cells crucial for the development and homeostasis of bone. Recent studies on long bones have suggested that skeletal stem cells in endochondral or intramembranous ossification sites have different differentiation capacities. However, this has not been well-defined in neural crest derived bones. Generally, the long bones are derived from mesoderm and follow an endochondral ossification model, while most of the cranial bones are neural crest (NC) in origin and follow an intramembranous ossification model. The mandible is unique: It is derived from the neural crest lineage but makes use of both modes of ossification. Early in fetal development, the mandibular body is generated by intramembranous ossification with subsequent endochondral ossification forming the condyle. The identities and properties for SSCs in these two sites remain unknown. Here, we use genetic lineage tracing in mouse to identify cells expressing the Hedgehog responsive gene Gli1, which is thought to mark the tissue resident SSCs. We track the Gli1+ cells, comparing cells within the perichondrium to those in the periosteum covering the mandibular body. In juvenile mice, these have distinct differentiation and proliferative potential. We also assess the presence of Sox10+ cells, thought to mark neural crest stem cells, but find no substantial population associated with the mandibular skeleton, suggesting that Sox10+ cells have limited contribution to maintaining postnatal mandibular bone. All together, our study indicates that the Gli1+ cells display distinct and limited differentiation capacity dependent on their regional associations.


Asunto(s)
Proteínas Hedgehog , Osteogénesis , Ratones , Animales , Proteína con Dedos de Zinc GLI1/metabolismo , Proteínas Hedgehog/metabolismo , Mandíbula/metabolismo , Cráneo , Cresta Neural
3.
Hum Mol Genet ; 29(11): 1900-1921, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32196547

RESUMEN

CTNND1 encodes the p120-catenin (p120) protein, which has a wide range of functions, including the maintenance of cell-cell junctions, regulation of the epithelial-mesenchymal transition and transcriptional signalling. Due to advances in next-generation sequencing, CTNND1 has been implicated in human diseases including cleft palate and blepharocheilodontic (BCD) syndrome albeit only recently. In this study, we identify eight novel protein-truncating variants, six de novo, in 13 participants from nine families presenting with craniofacial dysmorphisms including cleft palate and hypodontia, as well as congenital cardiac anomalies, limb dysmorphologies and neurodevelopmental disorders. Using conditional deletions in mice as well as CRISPR/Cas9 approaches to target CTNND1 in Xenopus, we identified a subset of phenotypes that can be linked to p120-catenin in epithelial integrity and turnover, and additional phenotypes that suggest mesenchymal roles of CTNND1. We propose that CTNND1 variants have a wider developmental role than previously described and that variations in this gene underlie not only cleft palate and BCD but may be expanded to a broader velocardiofacial-like syndrome.


Asunto(s)
Cateninas/genética , Labio Leporino/genética , Fisura del Paladar/genética , Anomalías Craneofaciales/genética , Ectropión/genética , Cardiopatías Congénitas/genética , Anomalías Dentarias/genética , Adolescente , Adulto , Animales , Anodoncia/diagnóstico por imagen , Anodoncia/genética , Anodoncia/fisiopatología , Niño , Preescolar , Labio Leporino/diagnóstico por imagen , Labio Leporino/fisiopatología , Fisura del Paladar/diagnóstico por imagen , Fisura del Paladar/fisiopatología , Anomalías Craneofaciales/diagnóstico por imagen , Anomalías Craneofaciales/fisiopatología , Modelos Animales de Enfermedad , Ectropión/diagnóstico por imagen , Ectropión/fisiopatología , Femenino , Predisposición Genética a la Enfermedad , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/fisiopatología , Humanos , Masculino , Ratones , Anomalías Dentarias/diagnóstico por imagen , Anomalías Dentarias/fisiopatología , Xenopus , Adulto Joven , Catenina delta
4.
Biomed Microdevices ; 21(2): 44, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30963305

RESUMEN

In embryogenesis, mesenchymal condensation is a critical event during the formation of many organ systems, including cartilage and bone. During organ formation, mesenchymal cells aggregate and undergo compaction while activating developmental programmes. The final three-dimensional form of the organ, as well as cell fates, can be influenced by the size and shape of the forming condensation. This process is hypothesized to result from multiscale cell interactions within mesenchymal microenvironments; however, these are complex to investigate in vivo. Three-dimensional in vitro models that recapitulate key phenotypes can contribute to our understanding of the microenvironment interactions regulating this fundamental developmental process. Here we devise such models by using image analysis to guide the design of polydimethylsiloxane 3D microstructures as cell culture substrates. These microstructures establish geometrically constrained micromass cultures of mouse embryonic skeletal progenitor cells which influence the development of condensations. We first identify key phenotypes differentiating face and limb bud micromass cultures by linear discriminant analysis of the shape descriptors for condensation morphology, which are used to guide the rational design of a micropatterned polydimethylsiloxane substrate. High-content imaging analysis highlights that the geometry of the microenvironment affects the establishment and growth of condensations. Further, cells commit to establish condensations within the first 5 h; condensations reach their full size within 17 h; following which they increase cell density while maintaining size for at least 7 days. These findings elucidate the value of our model in dissecting key aspects of mesenchymal condensation development.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Mesenquimatosas/citología , Animales , Adhesión Celular , Dimetilpolisiloxanos/química , Células Madre Embrionarias/citología , Fibronectinas/química , Ratones , Imagen Molecular , Nylons/química , Propilaminas/química , Silanos/química
5.
Biochem Soc Trans ; 44(6): 1753-1759, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27913686

RESUMEN

Defects in the development of the mandible can lead to micrognathia, or small jaw, which manifests in ciliopathic conditions, such as orofaciodigital syndrome, Meckel-Gruber syndrome, and Bardet-Biedl syndrome. Although micrognathia occurs frequently in human and mouse ciliopathies, it has been difficult to pinpoint the underlying cellular causes. In this mini-review, we shed light on the tissue-specific contributions to ciliary dysfunction in the development of the mandible. First, we outline the steps involved in setting up the jaw primordium and subsequent steps in the outgrowth of the mandibular skeleton. We then determine the critical tissue interactions using mice carrying a conditional mutation in the cilia gene Ofd1 Our studies highlight the usefulness of the Ofd1 mouse model and illustrate long-term possibilities for understanding the cellular and biochemical events underlying micrognathia.


Asunto(s)
Ciliopatías/genética , Modelos Animales de Enfermedad , Micrognatismo/genética , Mutación , Animales , Cilios/metabolismo , Ciliopatías/metabolismo , Humanos , Mandíbula/embriología , Mandíbula/metabolismo , Ratones , Micrognatismo/metabolismo , Proteínas/genética , Proteínas/metabolismo
6.
Dev Biol ; 396(1): 1-7, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25300580

RESUMEN

To feed or breathe, the oral opening must connect with the gut. The foregut and oral tissues converge at the primary mouth, forming the buccopharyngeal membrane (BPM), a bilayer epithelium. Failure to form the opening between gut and mouth has significant ramifications, and many craniofacial disorders have been associated with defects in this process. Oral perforation is characterized by dissolution of the BPM, but little is known about this process. In humans, failure to form a continuous mouth opening is associated with mutations in Hedgehog (Hh) pathway members; however, the role of Hh in primary mouth development is untested. Here, we show, using Xenopus, that Hh signaling is necessary and sufficient to initiate mouth formation, and that Hh activation is required in a dose-dependent fashion to determine the size of the mouth. This activity lies upstream of the previously demonstrated role for Wnt signal inhibition in oral perforation. We then turn to mouse mutants to establish that SHH and Gli3 are indeed necessary for mammalian mouth development. Our data suggest that Hh-mediated BPM persistence may underlie oral defects in human craniofacial syndromes.


Asunto(s)
Proteínas Hedgehog/metabolismo , Boca/embriología , Animales , Membrana Basal/embriología , Epitelio/embriología , Fibronectinas/metabolismo , Tracto Gastrointestinal/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Humanos , Inmunohistoquímica , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Morfolinas/química , Boca/fisiología , Proteínas del Tejido Nervioso/genética , Purinas/química , Proteínas Represoras/genética , Transducción de Señal , Factores de Tiempo , Proteínas Wnt/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis , Proteína Gli3 con Dedos de Zinc
7.
Dev Cell ; 25(6): 623-35, 2013 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-23806618

RESUMEN

Ciliopathies are a broad class of human disorders with craniofacial dysmorphology as a common feature. Among these is high arched palate, a condition that affects speech and quality of life. Using the ciliopathic Fuz mutant mouse, we find that high arched palate does not, as commonly suggested, arise from midface hypoplasia. Rather, increased neural crest expands the maxillary primordia. In Fuz mutants, this phenotype stems from dysregulated Gli processing, which in turn results in excessive craniofacial Fgf8 gene expression. Accordingly, genetic reduction of Fgf8 ameliorates the maxillary phenotypes. Similar phenotypes result from mutation of oral-facial-digital syndrome 1 (Ofd1), suggesting that aberrant transcription of Fgf8 is a common feature of ciliopathies. High arched palate is also a prevalent feature of fibroblast growth factor (FGF) hyperactivation syndromes. Thus, our findings elucidate the etiology for a common craniofacial anomaly and identify links between two classes of human disease: FGF-hyperactivation syndromes and ciliopathies.


Asunto(s)
Trastornos de la Motilidad Ciliar/genética , Anomalías Craneofaciales/genética , Factor 8 de Crecimiento de Fibroblastos/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Síndromes Orofaciodigitales/genética , Animales , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patología , Movimiento Celular/fisiología , Trastornos de la Motilidad Ciliar/patología , Anomalías Craneofaciales/patología , Proteínas del Citoesqueleto , Modelos Animales de Enfermedad , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Maxilar/anomalías , Ratones , Ratones Mutantes , Cresta Neural/anomalías , Síndromes Orofaciodigitales/patología , Hueso Paladar/anomalías , Fenotipo , Proteína con Dedos de Zinc GLI1
8.
Front Oral Biol ; 16: 147-54, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22759678

RESUMEN

Normal development of the palate depends on spatial and temporal coordination of complex cellular processes and tissue-tissue interactions. Because these processes are quite sensitive to environmental and genetic perturbation, clefts of the palate are among the most common congenital anomalies seen in live births. The clinical burden of cleft palate is significant, as conventional treatments include surgical repair combined with long-term rehabilitation. Affected children may require multiple operations and often have secondary problems such as perturbed speech development, dental occlusion, maxillary growth deficiencies and otitis media. Recent reports, from patient studies and mouse models, have implicated a number of genes in palatogenesis. It is difficult to pinpoint the direct pathological effects of specific genes in humans; therefore, the majority of mechanistic insights have derived from murine models. Furthermore, recent technological advances have made mice an ideal system for studying the signalling events associated with cleft palate. This review discusses several illustrative examples of genetic or molecular studies in which in utero reversal of cleft palate reveals sequential requirements in palate formation. As we develop a more comprehensive understanding of the genetic mechanisms underlying normal and pathological palate development, we can begin to consider the possibility of molecular tools to complement or even replace surgical interventions.


Asunto(s)
Fisura del Paladar/genética , Técnicas Genéticas/tendencias , Hueso Paladar/embriología , Animales , Fisura del Paladar/embriología , Fisura del Paladar/cirugía , Modelos Animales de Enfermedad , Desarrollo Embrionario/genética , Predicción , Humanos , Ratones , Transducción de Señal/genética
9.
PLoS One ; 7(11): e50422, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23185619

RESUMEN

Glycogen Synthase Kinase 3 (GSK-3) is a key player in development, physiology and disease. Because of this, GSK-3 inhibitors are increasingly being explored for a variety of applications. In addition most analyses focus on GSK-3ß and overlook the closely related protein GSK-3α. Here, we describe novel GSK-3α and GSK-3ß mouse alleles that allow us to visualise expression of their respective mRNAs by tracking ß-galactosidase activity. We used these new lacZ alleles to compare expression in the palate and cranial sutures and found that there was indeed differential expression. Furthermore, both are loss of function alleles and can be used to generate homozygous mutant mice; in addition, excision of the lacZ cassette from GSK-3α creates a Cre-dependent tissue-specific knockout. As expected, GSK3α mutants were viable, while GSK3ß mutants died after birth with a complete cleft palate. We also assessed the GSK-3α mutants for cranial and sternal phenotypes and found that they were essentially normal. Finally, we observed gestational lethality in compound GSK-3ß(-/-); GSK3α(+/-) mutants, suggesting that GSK-3 dosage is critical during embryonic development.


Asunto(s)
Fisura del Paladar/genética , Glucógeno Sintasa Quinasa 3/genética , Hueso Paladar/enzimología , ARN Mensajero/biosíntesis , Cráneo/enzimología , Alelos , Animales , Fisura del Paladar/enzimología , Fisura del Paladar/patología , Embrión de Mamíferos , Desarrollo Embrionario , Femenino , Dosificación de Gen , Expresión Génica , Genes Reporteros , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Heterocigoto , Homocigoto , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Transgénicos , Mutación , Hueso Paladar/patología , Embarazo , ARN Mensajero/genética , Cráneo/patología , beta-Galactosidasa
10.
PLoS One ; 6(10): e25847, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22022457

RESUMEN

INTRODUCTION: The function of Glycogen Synthase Kinases 3ß (GSK-3ß) has previously been shown to be necessary for normal secondary palate development. Using GSK-3ß null mouse embryos, we examine the potential coordinate roles of Wnt and Hedgehog signaling on palatal ossification. METHODS: Palates were harvested from GSK-3ß, embryonic days 15.0-18.5 (e15.0-e18.5), and e15.5 Indian Hedgehog (Ihh) null embryos, and their wild-type littermates. The phenotype of GSK-3ß null embryos was analyzed with skeletal whole mount and pentachrome stains. Spatiotemporal regulation of osteogenic gene expression, in addition to Wnt and Hedgehog signaling activity, were examined in vivo on GSK-3ß and Ihh +/+ and -/- e15.5 embryos using in situ hybridization and immunohistochemistry. To corroborate these results, expression of the same molecular targets were assessed by qRT-PCR of e15.5 palates, or e13.5 palate cultures treated with both Wnt and Hedgehog agonists and anatagonists. RESULTS: GSK-3ß null embryos displayed a 48 percent decrease (*p<0.05) in palatine bone formation compared to wild-type littermates. GSK-3ß null embryos also exhibited decreased osteogenic gene expression that was associated with increased Wnt and decreased Hedgehog signaling. e13.5 palate culture studies demonstrated that Wnt signaling negatively regulates both osteogenic gene expression and Hedgehog signaling activity, while inhibition of Wnt signaling augments both osteogenic gene expression and Hedgehog signaling activity. In addition, no differences in Wnt signaling activity were noted in Ihh null embryos, suggesting that canonical Wnt may be upstream of Hedgehog in secondary palate development. Lastly, we found that GSK-3ß -/- palate cultures were "rescued" with the Wnt inhibitor, Dkk-1. CONCLUSIONS: Here, we identify a critical role for GSK-3ß in palatogenesis through its direct regulation of canonical Wnt signaling. These findings shed light on critical developmental pathways involved in palatogenesis and may lead to novel molecular targets to prevent cleft palate formation.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Mesodermo/embriología , Mesodermo/enzimología , Organogénesis , Osteogénesis , Hueso Paladar/embriología , Hueso Paladar/enzimología , Animales , Embrión de Mamíferos/enzimología , Regulación del Desarrollo de la Expresión Génica , Glucógeno Sintasa Quinasa 3/deficiencia , Glucógeno Sintasa Quinasa 3 beta , Proteínas Hedgehog/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Organogénesis/genética , Osteogénesis/genética , Fenotipo , Regulación hacia Arriba , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA