Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 105(20): 7801-7811, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34581846

RESUMEN

Quorum sensing is a mechanism that facilitates cell-to-cell communication. Through signal molecular density for signal recognition, which leads to the regulation of some physiological and biochemical functions. Gluconacetobacter xylinus CGMCC 2955, which produces bacterial cellulose (BC), synthesizes the LuxR protein belonging to the LuxI/LuxR type QS system. Here, a luxR overexpression vector was transformed into G. xylinus CGMCC 2955. The overexpression of luxR increased the yield of BC by 15.6% after 16 days static culture and reduced the cell density by 15.5% after 120-h-agitated culture. The glucose was used up by G. xylinus-pMV24-luxR at 72-h-agitated fermentation, which 12 h earlier than the wild-type (WT). The total N-acylhomoserine lactones (AHL) content of the luxR-overexpressing strain and the WT strain attained 1367.9 ± 57.86 mg/L and 842.9 ± 54.22 mg/L, respectively. The C12-HSL and C14-HSL contents of G. xylinus-pMV24-luxR were 202 ± 21.66 mg/L and 409.6 ± 0.91 mg/L, which were significantly lower than that of WT. In contrast, C6-HSL showed opposite results. The difference of AHL content proved that overexpression of luxR improved the binding of AHL and showed preference for some specific AHL. The metabolic results demonstrated that upon glucose exhaustion, the consumption of gluconic acid was promoted by luxR overexpression, and the content of D- ( +)-trehalose, an antiretrograde metabolite, increased significantly. KEY POINTS: • The overexpression of luxR increased the yield of bacterial cellulose • The content of signal molecules was significantly different • Differential metabolites were involved in multiple metabolic pathways.


Asunto(s)
Gluconacetobacter xylinus , Percepción de Quorum , Acil-Butirolactonas , Proteínas Bacterianas/genética , Celulosa , Gluconacetobacter xylinus/genética , Transactivadores/genética
2.
Appl Microbiol Biotechnol ; 103(5): 1989-2006, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30637497

RESUMEN

The bacterial infections have always a serious problem to public health. Scientists are developing new antibacterial materials to overcome this problem. Polysaccharides are promising biopolymers due to their diverse biological functions, low toxicity, and high biodegradability. Chitin and chitosan have antibacterial properties due to their cationic nature, while cellulose/bacterial cellulose does not possess any antibacterial activity. Moreover, the insolubility of chitin in common solvents, the poor solubility of chitosan in water, and the low mechanical properties of chitosan have restricted their biomedical applications. In order to solve these problems, chemical modifications such as quaternization, carboxymethylation, cationization, or surface modification of these polymers with different antimicrobial agents, including metal and metal oxide nanoparticles, are carried out to obtain new materials with improved physiochemical and biological properties. This mini review describes the recent progress in such derivatives and composites with potential antibacterial applications.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Celulosa/farmacología , Quitina/farmacología , Quitosano/farmacología , Descubrimiento de Drogas/métodos , Celulosa/química , Quitina/química , Quitosano/química , Humanos , Nanopartículas del Metal/química , Metales/química
3.
Molecules ; 24(15)2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31344938

RESUMEN

Many Gram-negative bacteria can regulate gene expression in a cell density-dependent manner via quorum-sensing systems using N-acyl-homoserine lactones (AHLs), which are typical quorum-sensing signaling molecules, and thus modulate physiological characteristics. N-acyl-homoserine lactones are small chemical molecules produced at low concentrations by bacteria and are, therefore, difficult to detect. Here, a biosensor system method and liquid chromatography-tandem mass spectrometry were combined to detect and assay AHL production. As demonstrated by liquid chromatography-tandem mass spectrometry, Gluconacetobacter xylinus CGMCC No. 2955, a Gram-negative acetic acid-producing bacterium and a typical bacterial cellulose (BC) biosynthesis strain, produces six different AHLs, including N-acetyl-homoserine lactone, N-butanoyl-homoserine lactone, N-hexanoyl-homoserine lactone, N-3-oxo-decanoyl-homoserine lactone, N-dodecanoyl-homoserine lactone, and N-tetradecanoyl-homoserine lactone. Gluconacetobacter sp. strain SX-1, another Gram-negative acetic acid-producing bacterium, which can synthesize BC, produces seven different AHLs including N-acetyl-homoserine lactone, N-butanoyl-homoserine lactone, N-hexanoyl-homoserine lactone, N-3-oxo-octanoyl-homoserine lactone, N-decanoyl-homoserine lactone, N-dodecanoyl-homoserine lactone, and N-tetradecanoyl-homoserine lactone. These results lay the foundation for investigating the relationship between BC biosynthesis and quorum-sensing systems.


Asunto(s)
4-Butirolactona/análogos & derivados , Cromatografía Liquida , Gluconacetobacter/química , Espectrometría de Masas en Tándem , 4-Butirolactona/análisis , 4-Butirolactona/química , Proteínas Bacterianas/biosíntesis , Técnicas Biosensibles , Celulosa/biosíntesis , Cromatografía Liquida/métodos , Gluconacetobacter/fisiología , Percepción de Quorum , Espectrometría de Masas en Tándem/métodos
4.
ACS Synth Biol ; 9(11): 3171-3180, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33048520

RESUMEN

Komagataeibacter xylinus has received increasing attention as an important microorganism for the conversion of several carbon sources to bacterial cellulose (BC). However, BC productivity has been impeded by the lack of efficient genetic engineering techniques. In this study, a lambda Red and FLP/FRT-mediated site-specific recombination system was successfully established in Komagataeibacter xylinus. Using this system, the membrane bound gene gcd, a gene that encodes glucose dehydrogenase, was knocked out to reduce the modification of glucose to gluconic acid. The engineered strain could not produce any gluconic acid and presented a decreased bacterial cellulose (BC) production due to its restricted glucose utilization. To address this problem, the gene of glucose facilitator protein (glf; ZMO0366) was introduced into the knockout strain coupled with the overexpression of the endogenous glucokinase gene (glk). The BC yield of the resultant strain increased by 63.63-173.68%, thus reducing the production cost.


Asunto(s)
Bacterias/genética , Celulosa/genética , ADN Nucleotidiltransferasas/genética , Gluconacetobacter xylinus/genética , Recombinación Genética/genética , Carbono/metabolismo , Gluconatos/metabolismo , Glucosa/genética
5.
Carbohydr Polym ; 174: 1078-1086, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28821030

RESUMEN

In this study, bacterial cellulose (BC) was used as a matrix to synthesize graphene oxide/Titanium dioxide (GOTiO2)-based hybrid materials. It was indicated by X-ray diffraction and selected area electron diffraction that the crystal structure of GOTiO2 was a mixed phase containing anatase and rutile. TiO2 nanoparticles were of 10-30nm diameters and densely anchored on graphene oxide sheets. Superior photocatalytic performance of the GOTiO2 was achieved under near UV excitation. The photocatalytic efficiency was optimized through controlling an appropriate calcined temperature. The obtained GOTiO2 nanoparticles were filled into porous BC matrix (GOTiO2/BC), and the photocatalytic properties of GOTiO2 nanoparticles were well maintained. Consistent with photocatalytic performance of TiO2, GOTiO2/BC generated reactive oxygen species after near ultraviolet irradiation. No dark cytotoxicity was observed at the long incubation time. In parallel, following exposure of Staphylococcus aureus cells to GOTiO2 and irradiation, a significant decrease in cell viability, as well as an increased production of reactive oxygen species was observed, which induced cellular death. The results indicated that GOTiO2/BC possess an excellent photodynamic antibacterial activity.


Asunto(s)
Antibacterianos/farmacología , Celulosa/química , Grafito/química , Luz , Nanocompuestos , Titanio/química , Catálisis , Óxidos , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA