Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Chembiochem ; 25(16): e202400316, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38867605

RESUMEN

With the increasing use of polyethylene glycol (PEG) based proteins and drug delivery systems, anti-PEG antibodies have commonly been detected among the population, causing the accelerated blood clearance and hypersensitivity reactions, poses potential risks to the clinical efficacy and safety of PEGylated drugs. Therefore, vigilant monitoring of anti-PEG antibodies is crucial for both research and clinical guidance regarding PEGylated drugs. The enzyme-linked immunosorbent assay (ELISA) is a common method for detecting anti-PEG antibodies. However, diverse coating methods, blocking solutions and washing solutions have been employed across different studies, and unsuitable use of Tween 20 as the surfactant even caused biased results. In this study, we established the optimal substrate coating conditions, and investigated the influence of various surfactants and blocking solutions on the detection accuracy. The findings revealed that incorporating 1 % bovine serum albumin into the serum dilution in the absence of surfactants will result the credible outcomes of anti-PEG antibody detection.


Asunto(s)
Anticuerpos , Ensayo de Inmunoadsorción Enzimática , Polietilenglicoles , Polietilenglicoles/química , Anticuerpos/inmunología , Anticuerpos/química , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/inmunología , Animales , Tensoactivos/química , Humanos , Polisorbatos/química
2.
J Am Chem Soc ; 145(32): 18084-18093, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37527432

RESUMEN

Bioactive materials that can support cell adhesion and tissue regeneration are greatly in demand in clinical applications. Surface modification with bioactive molecules is an efficient strategy to convert conventional bioinert materials into bioactive materials. However, there is an urgent need to find a universal and one-step modification strategy to realize the above transformation for bioactivation. In this work, we report a universal and one-step modification strategy to easily modify and render diverse materials bioactivation by dipping materials into the solution of dibutylamine-DOPA-lysine-DOPA (DbaYKY) tripeptide-terminated cell-adhesive molecules, ß-peptide polymer, or RGD peptide for only 5 min. This strategy provides materials with a stable surface modification layer and does not cause an undesired surface color change like the widely used polydopamine coating. This one-step strategy can endow material surfaces with cell adhesion properties without concerns on nonspecific conjugation of proteins and macromolecules. This universal and one-step surface bioactivation strategy implies a wide range of applications in implantable biomaterials.


Asunto(s)
Materiales Biocompatibles , Péptidos , Materiales Biocompatibles/química , Péptidos/química , Adhesión Celular , Lisina , Dihidroxifenilalanina , Propiedades de Superficie
3.
J Am Chem Soc ; 144(16): 7283-7294, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35420800

RESUMEN

Multidrug resistance to chemotherapeutic drugs is one of the major causes for the failure of cancer treatment. Therefore, there is an urgent need to develop anticancer agents that can combat multidrug-resistant cancers effectively and mitigate drug resistance. Here, we report a rational design of anticancer heterochiral ß-peptide polymers as synthetic mimics of host defense peptides to combat multidrug-resistant cancers. The optimal polymer shows potent and broad-spectrum anticancer activities against multidrug-resistant cancer cells and is insusceptible to anticancer drug resistance owing to its membrane-damaging mechanism. The in vivo study indicates that the optimal polymer efficiently inhibits the growth and distant transfer of solid tumors and the metastasis and seeding of circulating tumor cells. Moreover, the polymer shows excellent biocompatibility during anticancer treatment on animals. In addition, the ß-peptide polymers address those prominent shortcomings of anticancer peptides and have superior stability against proteolysis, easy synthesis in large scale, and low cost. Collectively, the structural diversity and superior anticancer performance of ß-peptide polymers imply an effective strategy in designing and finding anticancer agents to combat multidrug-resistant cancers effectively while mitigating drug resistance.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Péptidos Catiónicos Antimicrobianos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Polímeros/química , Polímeros/farmacología
4.
J Am Chem Soc ; 144(4): 1690-1699, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35007085

RESUMEN

Interest in developing antibacterial polymers as synthetic mimics of host defense peptides (HPDs) has accelerated in recent years to combat antibiotic-resistant bacterial infections. Positively charged moieties are critical in defining the antibacterial activity and eukaryotic toxicity of HDP mimics. Most examples have utilized primary amines or guanidines as the source of positively charged moieties, inspired by the lysine and arginine residues in HDPs. Here, we explore the impact of amine group variation (primary, secondary, or tertiary amine) on the antibacterial performance of HDP-mimicking ß-peptide polymers. Our studies show that a secondary ammonium is superior to either a primary ammonium or a tertiary ammonium as the cationic moiety in antibacterial ß-peptide polymers. The optimal polymer, a homopolymer bearing secondary amino groups, displays potent antibacterial activity and the highest selectivity (low hemolysis and cytotoxicity). The optimal polymer displays potent activity against antibiotic-resistant bacteria and high therapeutic efficacy in treating MRSA-induced wound infections and keratitis as well as low acute dermal toxicity and low corneal epithelial cytotoxicity. This work suggests that secondary amines may be broadly useful in the design of antibacterial polymers.


Asunto(s)
Aminas/química , Antibacterianos/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Péptidos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Infección de Heridas/tratamiento farmacológico , Animales , Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Escherichia coli/efectos de los fármacos , Hemólisis/efectos de los fármacos , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Queratitis/patología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Ratones , Pruebas de Sensibilidad Microbiana , Péptidos/química , Péptidos/farmacología , Polímeros/química , Infecciones Estafilocócicas/microbiología , Infección de Heridas/microbiología
5.
Chemistry ; 28(65): e202202226, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-35996361

RESUMEN

The high-mortality invasive fungal infections seriously threaten the lives of immunocompromised people. Host defense peptides and cell-penetrating peptides are representative membrane-active peptides with different functions. Among them, host defense peptides mimicking is a valid strategy in the design of synthetic antifungal agents. Despite the brilliance in the field of intracellular delivery, the potential of cell-penetrating peptides and their mimics for designing antifungal agents has been overlooked. In this concept article, we describe the structural design of synthetic antifungal polymers as mimics of host defense peptides, and highlight the effectiveness and potential of cell-penetrating peptide-inspired strategy in designing potent and selective antifungal polymeric agents. In addition, an outlook for further expanding the design horizons of antifungal polymers is also presented.


Asunto(s)
Antifúngicos , Péptidos de Penetración Celular , Humanos , Antifúngicos/farmacología , Antifúngicos/química , Pruebas de Sensibilidad Microbiana , Péptidos de Penetración Celular/química , Péptidos Catiónicos Antimicrobianos , Polímeros
6.
Macromol Rapid Commun ; 43(23): e2200575, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35978269

RESUMEN

Hybrid peptides with heterogeneous backbone are a class of peptide mimics with adjustable proteolytic stability obtained from incorporating unnatural amino acid residues into peptide backbone. α/ß-peptides and peptide/peptoid hybrids are two types of hybrid peptides that are widely studied for diverse applications, and several synthetic methods have been developed. In this mini review, the advance in hybrid peptide synthesis is summarized, including solution-phase method, solid-phase method, and novel polymerization method. Conventional solution-phase method and solid-phase method generally result in oligomers with defined sequences, while polymerization methods have advantages in preparing peptide hybrid polymers with high molecular weight with simple operation and low cost. In addition, the future development of polymerization method to realize the control of the peptide hybrid polymer sequence is discussed.


Asunto(s)
Peptoides , Peptoides/química , Péptidos/química , Secuencia de Aminoácidos , Polimerizacion , Polímeros/química
7.
Phys Chem Chem Phys ; 23(2): 1475-1488, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33399594

RESUMEN

A promising alternative to classical antibiotics are antimicrobial peptides and their synthetic mimics (smAMPs) that supposedly act directly on membranes. For a more successful design of smAMPs, we need to know how the type of interaction with the membrane determines the type of membrane perturbation. How this, in turn, transfers into selectivity and microbial killing activity is largely unknown. Here, we characterize the action of two smAMPs: MM:CO (a copolymer of hydrophobic cyclooctyl subunits and charged ß-monomethyl-α-aminomethyl subunits) and the highly charged poly-NM (a homopolymer of α-aminomethyl subunits). By thorough characterization of vesicle leakage experiments, we elucidate complex membrane perturbation behavior in zwitterionic or negatively charged vesicles. Vesicle leakage data does not entirely agree with the growth inhibition of microbes. Our ensemble of advanced membrane permeabilization approaches clarifies these discrepancies. Long cumulative leakage kinetics show that the two smAMPs act either by transient leakage or by rare stochastic leakage events that occur at charge neutralization in the sample. We determine the strengths of individual leakage events induced by the smAMPs in membranes of various compositions. These strengths indicate changes in leakage mechanism over time and concentration range. Thus, our sophisticated analysis of vesicle leakage experiments reveals a fine-tuned flexibility in membrane permeabilization mechanisms. These details are indispensable in judging and designing membrane-active compounds.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Liposomas Unilamelares/metabolismo , Péptidos Catiónicos Antimicrobianos/química , Fluoresceínas/química , Glicerofosfatos/química , Interacciones Hidrofóbicas e Hidrofílicas , Permeabilidad/efectos de los fármacos , Unión Proteica , Electricidad Estática , Liposomas Unilamelares/química
8.
J Am Chem Soc ; 141(42): 16772-16780, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31573191

RESUMEN

Cell adhesive and other functional peptides (such as RGD, KRSR, YIGSR, VAPG, and BMP-2 peptides) are extensively studied and utilized in tissue engineering scaffolds and biomedical devices to modulate cell functions. Though PEG is frequently used as the antifouling layer, it is unclear how it affects the performance of functional peptides. By analyzing the impact of PEG at short (OEG4), medium (OEG8), and long chain length (PEG2K), we reveal that PEG chain length is critical and a medium-length PEG enables functional peptides to display their optimal and genuine functions in cell adhesion, migration, and differentiation by providing excellent antifouling to minimize background noise of unwanted cell adhesion and high enough surface density of functional peptides. Our result provides new avenues for maximizing the genuine functions of peptides. This study also provides a solution to prevent the heterogeneous and even divergent results caused by inappropriate choice of antifouling PEG and provides a general guidance in identifying new functional peptides.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Péptidos/química , Péptidos/farmacología , Polietilenglicoles/química , Animales , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Ratones , Células 3T3 NIH
9.
Artículo en Inglés | MEDLINE | ID: mdl-28739790

RESUMEN

Invasive fungal diseases are generally difficult to treat and often fatal. The therapeutic agents available to treat fungi are limited, and there is a critical need for new agents to combat these deadly infections. Antifungal compound development has been hindered by the challenge of creating agents that are highly active against fungal pathogens but not toxic to the host. Host defense peptides (HDPs) are produced by eukaryotes as a component of the innate immune response to pathogens and have served as inspiration for the development of many new antibacterial compounds. HDP mimics, however, have largely failed to exhibit potent and selective antifungal activity. Here, we present an HDP-like nylon-3 copolymer that is effective against diverse fungi while displaying only mild to moderate toxicity toward mammalian cells. This polymer is active on its own and in synergy with existing antifungal drugs against multiple species of Candida and Cryptococcus, reaching levels of efficacy comparable to those of the clinical agents amphotericin B and fluconazole in some cases. In addition, the polymer acts synergistically with azoles against different species of Aspergillus, including some azole-resistant strains. These findings indicate that nylon-3 polymers are a promising lead for development of new antifungal therapeutic strategies.


Asunto(s)
Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Candida/efectos de los fármacos , Cryptococcus/efectos de los fármacos , Nylons/farmacología , Anfotericina B/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Farmacorresistencia Fúngica/fisiología , Sinergismo Farmacológico , Fluconazol/farmacología , Humanos , Inmunidad Innata , Pruebas de Sensibilidad Microbiana , Raíces de Plantas/crecimiento & desarrollo , Polímeros/farmacología
10.
J Am Chem Soc ; 137(6): 2183-6, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25650957

RESUMEN

Candida albicans is the most common fungal pathogen in humans, and most diseases produced by C. albicans are associated with biofilms. We previously developed nylon-3 polymers with potent activity against planktonic C. albicans and excellent C. albicans versus mammalian cell selectivity. Here we show that these nylon-3 polymers have strong and selective activity against drug-resistant C. albicans in biofilms, as manifested by inhibition of biofilm formation and by killing of C. albicans in mature biofilms. The best nylon-3 polymer (poly-ßNM) is superior to the antifungal drug fluconazole for all three strains examined. This polymer is slightly less effective than amphotericin B (AmpB) for two strains, but the polymer is superior against an AmpB-resistant strain.


Asunto(s)
Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Polímeros/química , Antifúngicos/farmacología
11.
Mol Pharm ; 12(2): 362-74, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25437915

RESUMEN

Amphiphilic nucleic acid carriers have attracted strong interest. Three groups of nylon-3 copolymers (poly-ß-peptides) possessing different cationic/hydrophobic content were evaluated as siRNA delivery agents in this study. Their ability to condense siRNA was determined in SYBR Gold assays. Their cytotoxicity was tested by MTT assays, their efficiency of delivering Alexa Fluor-488-labeled siRNA intracellularly in the presence and absence of uptake inhibitors was assessed by flow cytometry, and their transfection efficacies were studied by luciferase knockdown in a cell line stably expressing luciferase (H1299/Luc). Endosomal release was determined by confocal laser scanning microscopy and colocalization with lysotracker. All polymers efficiently condensed siRNA at nitrogen-to-phosphate (N/P) ratios of 5 or lower, as reflected in hydrodynamic diameters smaller than that at N/P 1. Although several formulations had negative zeta potentials at N/P 1, G2C and G2D polyplexes yielded >80% uptake in H1299/Luc cells, as determined by flow cytometry. Luciferase knockdown (20-65%) was observed after transfection with polyplexes made of the high molecular weight polymers that were the most hydrophobic. The ability of nylon-3 polymers to deliver siRNA intracellularly even at negative zeta potential implies that they mediate transport across cell membranes based on their amphiphilicity. The cellular uptake route was determined to strongly depend on the presence of cholesterol in the cell membrane. These polymers are, therefore, very promising for siRNA delivery at reduced surface charge and toxicity. Our study identified nylon-3 formulations at low N/P ratios for effective gene knockdown, indicating that nylon-3 polymers are a new, promising type of gene delivery agent.


Asunto(s)
Cationes/química , Técnicas de Transferencia de Gen , Nylons/química , Polímeros/química , ARN Interferente Pequeño/química , Transfección/métodos , Estructura Molecular
12.
Soft Matter ; 11(34): 6840-51, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26234884

RESUMEN

Most antimicrobial peptides act upon target microorganisms by permeabilizing their membranes. The mode of action is often assessed by vesicle leakage experiments that use model membranes, with the assumption that biological activity correlates with the permeabilization of the lipid bilayer. The current work aims to extend the interpretation of vesicle leakage results and examine the correlation between vesicle leakage and antimicrobial activity. To this end, we used a lifetime-based leakage assay with calcein-loaded vesicles to study the membrane permeabilizing properties of a novel antifungal polymer poly-NM, two of its analogs, and a series of detergents. In conjunction, the biological activities of these compounds against Candida albicans were assessed and correlated with data from vesicle leakage. Poly-NM induces all-or-none leakage in polar yeast lipid vesicles at the polymer's MIC, 3 µg mL(-1). At this and higher concentrations, complete leakage after an initial lag time was observed. Concerted activity tests imply that this polymer acts independently of the detergent octyl glucoside (OG) for both vesicle leakage and activity against C. albicans spheroplasts. In addition, poly-NM was found to have negligible activity against zwitterionic vesicles and red blood cells. Our results provide a consistent, detailed picture of the mode of action of poly-NM: this polymer induces membrane leakage by electrostatic lipid clustering. In contrast, poly-MM:CO, a nylon-3 polymer comprised of both cationic and hydrophobic segments, seems to act by a different mechanism that involves membrane asymmetry stress. Vesicle leakage for this polymer is transient (limited to <100%) and graded, non-specific among zwitterionic and polar yeast lipid vesicles, additive with detergent action, and correlates poorly with biological activity. Based on these results, we conclude that comprehensive leakage experiments can provide a detailed description of the mode of action of membrane permeabilizing compounds. Without this thorough approach, it would have been logical to assume that the two nylon-3 polymers we examined act via similar mechanisms; it is surprising that their mechanisms are so distinct. Some, but not all mechanisms of vesicle permeabilization allow for antimicrobial activity.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Detergentes/química , Nylons/química , Nylons/farmacología , Liposomas Unilamelares/metabolismo , Antiinfecciosos/metabolismo , Bacterias/efectos de los fármacos , Candida albicans/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Hemólisis/efectos de los fármacos , Humanos , Cinética , Nylons/metabolismo
13.
J Am Chem Soc ; 136(41): 14498-504, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25279431

RESUMEN

Nylon-3 polymers (poly-ß-peptides) have been investigated as synthetic mimics of host-defense peptides in recent years. These polymers are attractive because they are much easier to synthesize than are the peptides themselves, and the polymers resist proteolysis. Here we describe in vitro analysis of selected nylon-3 copolymers against Clostridium difficile, an important nosocomial pathogen that causes highly infectious diarrheal disease. The best polymers match the human host-defense peptide LL-37 in blocking vegetative cell growth and inhibiting spore outgrowth. The polymers and LL-37 were effective against both the epidemic 027 ribotype and the 012 ribotype. In contrast, neither vancomycin nor nisin inhibited outgrowth for the 012 ribotype. The best polymer was less hemolytic than LL-37. Overall, these findings suggest that nylon-3 copolymers may be useful for combatting C. difficle.


Asunto(s)
Antibacterianos/farmacología , Clostridioides difficile/efectos de los fármacos , Péptidos/farmacología , Polímeros/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Bacillus cereus/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Clostridioides difficile/citología , Clostridioides difficile/crecimiento & desarrollo , Relación Dosis-Respuesta a Droga , Enterococcus faecium/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Péptidos/síntesis química , Péptidos/química , Polímeros/síntesis química , Polímeros/química , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad , Resistencia a la Vancomicina/efectos de los fármacos
14.
J Am Chem Soc ; 136(11): 4333-42, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24606327

RESUMEN

Fungal infections are a major challenge to human health that is heightened by pathogen resistance to current therapeutic agents. Previously, we were inspired by host-defense peptides to develop nylon-3 polymers (poly-ß-peptides) that are toxic toward the fungal pathogen Candida albicans but exert little effect on mammalian cells. Based on subsequent analysis of structure-activity relationships among antifungal nylon-3 polymers, we have now identified readily prepared cationic homopolymers active against strains of C. albicans that are resistant to the antifungal drugs fluconazole and amphotericin B. These nylon-3 polymers are nonhemolytic. In addition, we have identified cationic-hydrophobic copolymers that are highly active against a second fungal pathogen, Cryptococcus neoformans, and moderately active against a third pathogen, Aspergillus fumigatus.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Farmacorresistencia Fúngica/efectos de los fármacos , Nylons/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Nylons/síntesis química , Nylons/química , Relación Estructura-Actividad
15.
J Am Chem Soc ; 136(11): 4410-8, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24601599

RESUMEN

Binary nylon-3 copolymers containing cationic and hydrophobic subunits can mimic the biological properties of host-defense peptides, but relationships between composition and activity are not yet well understood for these materials. Hydrophobic subunits in previously studied examples have been limited mostly to cycloalkane-derived structures, with cyclohexyl proving to be particularly promising. The present study evaluates alternative hydrophobic subunits that are isomeric or nearly isomeric with the cyclohexyl example; each has four sp(3) carbons in the side chains. The results show that varying the substitution pattern of the hydrophobic subunit leads to relatively small changes in antibacterial activity but causes significant changes in hemolytic activity. We hypothesize that these differences in biological activity profile arise, at least in part, from variations among the conformational propensities of the hydrophobic subunits. The α,α,ß,ß-tetramethyl unit is optimal among the subunits we have examined, providing copolymers with potent antibacterial activity and excellent prokaryote vs eukaryote selectivity. Bacteria do not readily develop resistance to the new antibacterial nylon-3 copolymers. These findings suggest that variation in subunit conformational properties could be generally valuable in the development of synthetic polymers for biological applications.


Asunto(s)
Antibacterianos/farmacología , Bacillus cereus/efectos de los fármacos , Nylons/farmacología , Polímeros/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Salmonella enterica/efectos de los fármacos , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Células 3T3 NIH , Nylons/síntesis química , Nylons/química , Polímeros/síntesis química , Polímeros/química , Relación Estructura-Actividad
16.
J Am Chem Soc ; 136(41): 14530-5, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25269798

RESUMEN

Host-defense peptides (HDPs) are produced by eukaryotes to defend against bacterial infection, and diverse synthetic polymers have recently been explored as mimics of these natural peptides. HDPs are rich in both hydrophobic and cationic amino acid residues, and most HDP-mimetic polymers have therefore contained binary combinations of hydrophobic and cationic subunits. However, HDP-mimetic polymers rarely duplicate the hydrophobic surface and cationic charge density found among HDPs ( Hu , K. ; et al. Macromolecules 2013 , 46 , 1908 ); the charge and hydrophobicity are generally higher among the polymers. Statistical analysis of HDP sequences ( Wang , G. ; et al. Nucleic Acids Res. 2009 , 37 , D933 ) has revealed that serine (polar but uncharged) is a very common HDP constituent and that glycine is more prevalent among HDPs than among proteins in general. These observations prompted us to prepare and evaluate ternary nylon-3 copolymers that contain a modestly polar but uncharged subunit, either serine-like or glycine-like, along with a hydrophobic subunit and a cationic subunit. Starting from binary hydrophobic-cationic copolymers that were previously shown to be highly active against bacteria but also highly hemolytic, we found that replacing a small proportion of the hydrophobic subunit with either of the polar, uncharged subunits can diminish the hemolytic activity with minimal impact on the antibacterial activity. These results indicate that the incorporation of polar, uncharged subunits may be generally useful for optimizing the biological activity profiles of antimicrobial polymers. In the context of HDP evolution, our findings suggest that there is a selective advantage to retaining polar, uncharged residues in natural antimicrobial peptides.


Asunto(s)
Péptidos/química , Polímeros/química , Cationes/química , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Molecular
17.
Macromol Biosci ; 24(2): e2300327, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37714144

RESUMEN

The infections associated with implantable medical devices can greatly affect the therapeutic effect and impose a heavy financial burden. Therefore, it is of great significance to develop antimicrobial biomaterials for the prevention and mitigation of healthcare-associated infections. Here, a facile construction of antimicrobial surface via one-step co-deposition of peptide polymer and dopamine is reported. The co-deposition of antimicrobial peptide polymer DLL60 BLG40 with dopamine (DA) on the surface of thermoplastic polyurethane (TPU) provides peptide polymer-modified TPU surface (TPU-DLL60 BLG40 ). The antimicrobial test shows that the TPU-DLL60 BLG40 surfaces of the sheet and the catheter both exhibit potent killing of 99.9% of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli). In addition, the TPU-DLL60 BLG40 surface also exhibits excellent biocompatibility. This one-step antimicrobial modification method is fast and efficient, implies promising application in surface antimicrobial modification of implantable biomaterials and medical devices.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Polímeros/farmacología , Polímeros/química , Dopamina/farmacología , Escherichia coli , Péptidos/química , Materiales Biocompatibles/farmacología , Poliuretanos/farmacología , Poliuretanos/química
18.
Nat Commun ; 15(1): 6288, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060236

RESUMEN

Host defense peptide (HDP)-mimicking polymers are promising therapeutic alternatives to antibiotics and have large-scale untapped potential. Artificial intelligence (AI) exhibits promising performance on large-scale chemical-content design, however, existing AI methods face difficulties on scarcity data in each family of HDP-mimicking polymers (<102), much smaller than public polymer datasets (>105), and multi-constraints on properties and structures when exploring high-dimensional polymer space. Herein, we develop a universal AI-guided few-shot inverse design framework by designing multi-modal representations to enrich polymer information for predictions and creating a graph grammar distillation for chemical space restriction to improve the efficiency of multi-constrained polymer generation with reinforcement learning. Exampled with HDP-mimicking ß-amino acid polymers, we successfully simulate predictions of over 105 polymers and identify 83 optimal polymers. Furthermore, we synthesize an optimal polymer DM0.8iPen0.2 and find that this polymer exhibits broad-spectrum and potent antibacterial activity against multiple clinically isolated antibiotic-resistant pathogens, validating the effectiveness of AI-guided design strategy.


Asunto(s)
Antibacterianos , Inteligencia Artificial , Polímeros , Polímeros/química , Polímeros/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Diseño de Fármacos
19.
J Am Chem Soc ; 135(44): 16296-9, 2013 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-24156536

RESUMEN

Substrates that selectively encourage the growth of specific cell types are valuable for the engineering of complex tissues. Some cell-selective peptides have been identified from extracellular matrix proteins; these peptides have proven useful for biomaterials-based approaches to tissue repair or regeneration. However, there are very few examples of synthetic materials that display selectivity in supporting cell growth. We describe nylon-3 polymers that support in vitro culture of endothelial cells but do not support the culture of smooth muscle cells or fibroblasts. These materials may be promising for vascular biomaterials applications.


Asunto(s)
Técnicas de Cultivo de Célula , Células Endoteliales/citología , Nylons/química , Animales , Apoptosis , Adhesión Celular , Proliferación Celular , Humanos , Ratones , Estructura Molecular , Células 3T3 NIH , Propiedades de Superficie
20.
J Am Chem Soc ; 135(14): 5270-3, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23547967

RESUMEN

Host-defense peptides inhibit bacterial growth but show little toxicity toward mammalian cells. A variety of synthetic polymers have been reported to mimic this antibacterial selectivity; however, achieving comparable selectivity for fungi is more difficult because these pathogens are eukaryotes. Here we report nylon-3 polymers based on a novel subunit that display potent antifungal activity (MIC = 3.1 µg/mL for Candida albicans ) and favorable selectivity (IC10 > 400 µg/mL for 3T3 fibroblast toxicity; HC10 > 400 µg/mL for hemolysis).


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Bacterias/efectos de los fármacos , Candida albicans/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Nylons/farmacología , Células 3T3 , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Fibroblastos/citología , Hemólisis , Ratones , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Nylons/síntesis química , Nylons/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA