Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 24(1): 13, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627555

RESUMEN

BACKGROUND: Taraxacum kok-saghyz Rodin (TKS) is a promising commercial alternative natural rubber (NR) yielding plant. Cultivating TKS with a high NR content is an important breeding target, and developing molecular markers related to NR content can effectively accelerate the breeding process of TKS. RESULTS: To construct a high-density SNP genetic map and uncover genomic regions related to the NR content in TKS, an F1 mapping population of TKS was constructed by crossing two parents (l66 and X51) with significant differences in NR contents. The NR content of the F1 plants ranged from 0.30 to 15.14% and was distributed normally with a coefficient of variation of 47.61%, indicating quantitative trait inheritance. Then, employing whole-genome resequencing (WGR), a TKS genetic linkage map of 12,680 bin markers comprising 322,439 SNPs was generated. Based on the genetic map and NR content of the F1 population, six quantitative trait loci (QTLs) for NR content with LOD > 4.0 were identified on LG01/Chr01 and LG06/Chr06. Of them, the 2.17 Mb genomic region between qHRC-C6-1 and qHRC-C6-2 on ChrA06, with 65.62% PVE in total, was the major QTL region. In addition, the six QTLs have significant additive genetic effects on NR content and could be used to develop markers for marker-assisted selection (MAS) in TKS with a high NR content. CONCLUSION: This work constructed the first high-density TKS genetic map and identified the QTLs and genomic regions controlling the NR content, which provides useful information for fine mapping, map-based cloning, and MAS in TKS.


Asunto(s)
Sitios de Carácter Cuantitativo , Taraxacum , Goma , Taraxacum/genética , Polimorfismo de Nucleótido Simple , Fitomejoramiento , Fenotipo , Ligamiento Genético
2.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37446175

RESUMEN

MADS-box transcription regulators play important roles in plant growth and development. However, very few MADS-box genes have been isolated in the genus Taraxacum, which consists of more than 3000 species. To explore their functions in the promising natural rubber (NR)-producing plant Taraxacum kok-saghyz (TKS), MADS-box genes were identified in the genome of TKS and the related species Taraxacum mongolicum (TM; non-NR-producing) via genome-wide screening. In total, 66 TkMADSs and 59 TmMADSs were identified in the TKS and TM genomes, respectively. From diploid TKS to triploid TM, the total number of MADS-box genes did not increase, but expansion occurred in specific subfamilies. Between the two genomes, a total of 11 duplications, which promoted the expansion of MADS-box genes, were identified in the two species. TkMADS and TmMADS were highly conserved, and showed good collinearity. Furthermore, most TkMADS genes exhibiting tissue-specific expression patterns, especially genes associated with the ABCDE model, were preferentially expressed in the flowers, suggesting their conserved and dominant functions in flower development in TKS. Moreover, by comparing the transcriptomes of different TKS lines, we identified 25 TkMADSs related to biomass formation and 4 TkMADSs related to NR content, which represented new targets for improving the NR yield of TKS.


Asunto(s)
Goma , Taraxacum , Goma/metabolismo , Taraxacum/genética , Taraxacum/metabolismo , Genoma , Transcriptoma , Evolución Biológica , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo
3.
Int J Mol Sci ; 24(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37298239

RESUMEN

Taraxacum kok-saghyz Rodin (TKS) has great potential as an alternative natural-rubber (NR)-producing crop. The germplasm innovation of TKS still faces great challenges due to its self-incompatibility. Carbon-ion beam (CIB) irradiation is a powerful and non-species-specific physical method for mutation creation. Thus far, the CIB has not been utilized in TKS. To better inform future mutation breeding for TKS by the CIB and provide a basis for dose-selection, adventitious buds, which not only can avoid high levels of heterozygosity, but also further improve breeding efficiency, were irradiated here, and the dynamic changes of the growth and physiologic parameters, as well as gene expression pattern were profiled, comprehensively. The results showed that the CIB (5-40 Gy) caused significant biological effects on TKS, exhibiting inhibitory effects on the fresh weight and the number of regenerated buds and roots. Then,15 Gy was chosen for further study after comprehensive consideration. CIB-15 Gy resulted in significant oxidative damages (hydroxyl radical (OH•) generation activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and malondialdehyde (MDA) content) and activated the antioxidant system (superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX)) of TKS. Based on RNA-seq analysis, the number of differentially expressed genes (DEGs) peaked at 2 h after CIB irradiation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DNA-replication-/repair- (mainly up-regulated), cell-death- (mainly up-regulated), plant-hormone- (auxin and cytokinin, which are related to plant morphogenesis, were mainly down-regulated), and photosynthesis- (mainly down-regulated) related pathways were involved in the response to the CIB. Furthermore, CIB irradiation can also up-regulate the genes involved in NR metabolism, which provides an alternative strategy to elevate the NR production in TKS in the future. These findings are helpful to understand the radiation response mechanism and further guide the future mutation breeding for TKS by the CIB.


Asunto(s)
Taraxacum , Transcriptoma , Taraxacum/metabolismo , Fitomejoramiento , Perfilación de la Expresión Génica , Goma/metabolismo , Carbono/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Plant Cell Rep ; 33(4): 669-80, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24556963

RESUMEN

KEY MESSAGE: This study developed a new purple coloured Taraxacum brevicorniculatum plant through genetic transformation using the Arabidopsis AtPAP1 gene, which overproduced anthocyanins in its vegetative tissues. Rubber-producing Taraxacum plants synthesise high-quality natural rubber (NR) in their roots and so are a promising alternative global source of this raw material. A major factor in its commercialization is the need for multipurpose exploitation of the whole plant. To add value to the aerial tissues, red/purple plants of the rubber-producing Taraxacum brevicorniculatum species were developed through heterologous expression of the production of anthocyanin pigment 1 (AtPAP1) transcription factor from Arabidopsis thaliana. The vegetative tissue of the transgenic plants showed an average of a 48-fold increase in total anthocyanin content over control levels, but with the exception of pigmentation, the transgenic plants were phenotypically comparable to controls and displayed similar growth vigor. Southern blot analysis confirmed that the AtPAP1 gene had been integrated into the genome of the high anthocyanin Taraxacum plants. The AtPAP1 expression levels were estimated by quantitative real-time PCR and were highly correlated with the levels of total anthocyanins in five independent transgenic lines. High levels of three cyanidin glycosides found in the purple plants were characterized by high performance liquid chromatography-mass spectrum analysis. The presence of NR was verified by NMR and infrared spectroscopy, and confirmed that NR biosynthesis had not been affected in the transgenic Taraxacum lines. In addition, other major phenylpropanoid products such as chlorogenic acid and quercetin glycosides were also enhanced in the transgenic Taraxacum. The red/purple transgenic Taraxacum lines described in this study would increase the future application of the species as a rubber-producing crop due to its additional health benefits.


Asunto(s)
Antocianinas/biosíntesis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Taraxacum/genética , Taraxacum/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Southern Blotting , Regulación de la Expresión Génica de las Plantas , Fenotipo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa , Propanoles/metabolismo , Goma , Factores de Transcripción/genética , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA