Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Macromol Rapid Commun ; 44(6): e2200858, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36661258

RESUMEN

Polymer melt strength (MS) is strongly correlated with its molecular structure, while their relationship is not very clear yet. In this work, designable long-chain branched polylactide (LCB-PLA) is prepared in situ by using a tailor-made (methyl methacrylate)-co-(glycidyl methacrylate) copolymer (MG) with accurate number of reactive sites. A new concept of branching density (φ) in the LCB-PLA system is defined to quantitively study their relationship. Importantly, a critical point of φc  = 5.5 mol/104  mol C is revealed for the first time, below which the zero-shear viscosity (η0 ) corresponding to MS increases slowly with a slope of Δη0 /Δφ = 1400, while it increases sharply above this critical point due to entanglement of neighboring LCB-PLA chains. Consequently, the MS of PLA increased by >100 times by optimizing the LCB structures while maintaining processibility. Therefore, this work provides a deeper understanding and feasible route in quantitative design of polymers with high(er) melt strength for some specialty applications.


Asunto(s)
Poliésteres , Polímeros , Poliésteres/química , Polímeros/química , Estructura Molecular
2.
Nano Lett ; 21(19): 8236-8243, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34597051

RESUMEN

Graphene oxide (GO) is receiving tremendous attention in membrane separation; however, its desalination performances remain suboptimal because of excessive swelling and tortuous transport pathways. Herein, we chemically joint GO nanosheets and phenolic nanomeshes together to form laminated membranes comprising through-plane nanopores and stabilized nanochannels. GO and phenolic/polyether nanosheets are mixed to form stacked structures and then treated in H2SO4 to remove polyether to produce nanomeshes and to chemically joint GO with phenolic nanomeshes. Thus-synthesized laminated membranes possess enhanced interlayer interactions and narrowed interlayer spacings down to 6.4 Å. They exhibit water permeance up to 165.6 L/(m2 h bar) and Na2SO4 rejection of 97%, outperforming most GO-based membranes reported so far. Moreover, the membranes are exceptionally stable in water because the chemically jointed laminates suppress the swelling of GO. This work reports hybrid laminated structures of GO and phenolic nanomeshes, which are highly desired in desalination and other applications.


Asunto(s)
Grafito , Nanoporos , Membranas Artificiales , Agua
3.
Biomacromolecules ; 22(10): 4228-4236, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34499468

RESUMEN

Fabricating advanced polymer composites with remarkable mechanical and thermal conductivity performances is desirable for developing advanced devices and equipment. In this study, a novel strategy to prepare anisotropic wood-based scaffolds with a naturally aligned microchannel structure from balsa wood is demonstrated. The wood microchannels were coated with polydopamine-surface-modified small graphene oxide (PGO) nanosheets via assembly. The highly aligned porous microstructures, with thin wood cell walls and large voids along the cellulose microchannels, allow polymers to enter, resulting in the fabrication of the wood-polymer nanocomposite. The tensile stiffness and strength of the resulting nanocomposite reach 8.10 GPa and 90.3 MPa with a toughness of 5.0 MJ m-3. The thermal conductivity of the nanocomposite is improved significantly by coating a PGO layer onto the wood scaffolds. The nanocomposite exhibits not only ultrahigh thermal conductivity (in-plane about 5.5 W m-1 K-1 and through-plane about 2.1 W m-1 K-1) but also satisfactory electrical insulation (volume resistivity of about 1015 Ω·cm). Therefore, the results provide a strategy to fabricate thermal management materials with excellent mechanical properties.


Asunto(s)
Nanocompuestos , Madera , Celulosa , Conductividad Térmica
4.
Small ; 13(7)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27918646

RESUMEN

Molybdenum diselenide (MoSe2 ) has emerged as a promising electrocatalyst for hydrogen evolution reaction (HER). However, its properties are still confined due to the limited active sites and poor conductivity. Thus, it remains a great challenge to synergistically achieve structural and electronic modulations for MoSe2 -based HER catalysts because of the contradictory relationship between these two characteristics. Herein, bacterial cellulose-derived carbon nanofibers are used to assist the uniform growth of few-layered MoSe2 nanosheets, which effectively increase the active sites of MoSe2 for hydrogen atom adsorption. Meanwhile, carbonized bacterial cellulose (CBC) nanofibers provide a 3D network for electrolyte penetration into the inner space and accelerate electron transfer as well, thus leading to the dramatically increased HER activity. In acidic media, the CBC/MoSe2 hybrid catalyst exhibits fast hydrogen evolution kinetics with onset overpotential of 91 mV and Tafel slope of 55 mV dec-1 , which is much more outstanding than both bulk MoSe2 aggregates and CBC nanofibers. Furthermore, the fast HER kinetics are well supported by theoretical calculations of density-functional-theory analysis with a low activation barrier of 0.08 eV for H2 generation. Hence, this work highlights an efficient solution to develop high-performance HER catalysts by incorporating biotemplate materials, to simultaneously achieve increased active sites and conductivity.


Asunto(s)
Conductividad Eléctrica , Hidrógeno/análisis , Imagenología Tridimensional , Molibdeno/química , Nanofibras/química , Selenio/química , Bacterias/química , Catálisis , Celulosa/química , Electrones , Iones , Nanofibras/ultraestructura , Teoría Cuántica , Difracción de Rayos X
5.
Int J Biol Macromol ; 262(Pt 1): 130029, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340935

RESUMEN

The wide application of fully biodegradable polylactic acid/polybutylene terephthalate (PLA/PBAT) blends in environmentally friendly packaging were limited because of poor compatibility. Normal compatibilizers suffer from poor thermal stability and non-biodegradability. In this work, epoxy copolymer (MDOG) with different molecular structures were made of 2-methylene-1, 3-dioxoheptane, and glycidyl methacrylate as raw materials by free radical copolymerization. MDOG copolymers have good biodegradability and a high thermal decomposition temperature of 361 °C. The chemical reaction of the epoxy groups in MDOG with PLA and PBAT during the melting reaction improved the interfacial bonding by decreasing the particle size of PBAT. Compared to the PLA/PBAT blends, the tensile strength and fracture toughness of PLA/PBAT/MDOG blends were enhanced to 34.6 MPa and 115.8 MJ/m3, which are 25 % and 81 % higher, respectively. As a result, this work offers new methods for developing thermally stable and biodegradable compatibilizers, which will hopefully promote the development of packaging industry.


Asunto(s)
Adipatos , Alquenos , Ácidos Ftálicos , Poliésteres , Polímeros , Resinas Epoxi , Poli A , Ácido Láctico
6.
Int J Biol Macromol ; 270(Pt 1): 132223, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777688

RESUMEN

The combination of crystallization, transparency, and strength is still a challenge for broadening the application of polylactic acid (PLA) films, while it is also difficult to balance. In this work, the long aliphatic chains of octadecylamine (ODA) were grafted onto the surface of cellulose nanocrystal (CNC) by tannic acid oxidation self-polymerization and Michael addition/Schiff base reaction between polytannic acid and ODA. Furthermore, the ODA grafted CNC (g-CNC) was used as green reinforcement for the PLA matrix and a series of PLA/g-CNC nanocomposite films were prepared by the casting method. The DSC, WAXD, POM, UV-vis and stretching test were employed to examine the effect of g-CNC on the properties of the as-prepared PLA/g-CNC nanocomposite films. It shows that the g-CNC is effective to improve the melt crystallization rate of PLA from 11 min to 7.3 min. Most importantly, the crystal size of the PLA spherulites was significantly reduced due to the well dispersion in the amorphous PLA matrix, which would effectively improve the transmittance of the PLA films and synchronously realize the combination of crystallization (62 %) and transparency (80.6 %). Moreover, the improved crystallization could also enhance the heat deformation performance of the PLA films since the heat resistance is closely associated with the crystallinity. Besides, the grafted ODA long chains improve the compatibility between CNC and PLA, leading to the reinforcement of PLA matrix, where the tensile strength reaches 65.05 MPa from 44.31 MPa. Compared with the pristine CNC, the addition of g-CNC makes more comprehensive improvement in the properties of the PLA films.


Asunto(s)
Celulosa , Cristalización , Poliésteres , Poliésteres/química , Celulosa/química , Nanocompuestos/química , Resistencia a la Tracción , Nanopartículas/química , Aminas/química , Taninos/química
7.
Int J Biol Macromol ; 234: 123584, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36796569

RESUMEN

The application of poly(lactic acid) (PLA) is limited by its low crystallization rate. Conventional methods to increase crystallization rate usually result in a significant loss of transparency. In this work, a bundled bis-amide organic compound N'-(3-(hydrazinyloxy)benzoyl)-1-naphthohydrazide (HBNA) was used as a nucleator to prepare PLA/HBNA blends with enhanced crystallization, heat resistance and transparency. HBNA dissolves in PLA matrix at high temperature and self-assembles into bundle microcrystals by intermolecular hydrogen bonding at a lower temperature, which induces PLA to form ample spherulites and "shish-kebab-like" structure rapidly. The effects of HBNA assembling behavior and nucleation activity on the PLA properties and the corresponding mechanism are systematically investigated. As a result, the crystallization temperature of PLA increased from 90 °C to 123 °C by adding as low as 0.75 wt% of HBNA, and the half-crystallization time (t1/2) at 135 °C decreased from 31.0 min to 1.5 min. More importantly, the PLA/HBNA maintains good transparency (transmittance > 75 % and haze is ca. 27 %) due to the decreased crystal size, even though the crystallinity of PLA is increased to 40 %, which also led to good heat resistance. The present work is expected to expand the application of PLA in packaging and other fields.


Asunto(s)
Amidas , Calor , Cristalización , Poliésteres/química
8.
Int J Biol Macromol ; 243: 125017, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37245750

RESUMEN

Poor compatibility limits the wide application of biodegradable poly (lactic acid)/poly (butylene adipate-terephthalate) (PLA/PBAT) blends in packaging industry. How to prepare compatibilizers with high efficiency and low cost by simple methods is a challenge. In this work, methyl methacrylate-co-glycidyl methacrylate (MG) copolymer with different epoxy group content are synthesized as reactive compatibilizers to resolve this issue. The effects of glycidyl methacrylate and MG contents on phase morphology and physical properties of the PLA/PBAT blends are systematically investigated. During melt blending, MG migrates to the phase interface, and then grafts with PBAT to form PLA-g-MG-g-PBAT terpolymers. When the molar ratio of MMA and GMA in MG is 3:1, the reaction activity of MG with PBAT is the highest and the compatibilization effect is the best. When the M3G1 content is 1 wt%, the tensile strength and the fracture toughness are increased to 37. 1 MPa and 120 MJ/m3, which increase by 34 % and 87 %, respectively. The size of PBAT phase decreases from 3.7 µm to 0.91 µm. Therefore, this work provides a low-cost and simple method to prepare the compatibilizers with high efficiency for the PLA/PBAT blend, and provides a new basis for the design of epoxy compatibilizers.


Asunto(s)
Poliésteres , Polímeros , Resinas Epoxi , Adipatos , Poli A , Ácido Láctico
9.
ACS Appl Mater Interfaces ; 14(3): 4542-4551, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35034447

RESUMEN

The construction of fibrous ionic conductors and sensors with large stretchability, low-temperature tolerance, and environmental stability is highly desired for practical wearable devices yet is challenging. Herein, metallogels (MOGs) with a rapidly reversible force-stimulated sol-gel transition were employed and encapsulated into a hollow thermoplastic elastomer (TPE) microfiber through a simple coaxial spinning. The resultant MOG@TPE coaxial fiber exhibited a high stretchability (>100%) in a broad temperature range (-50 to 50 °C). The MOG@TPE fibrous strain sensor demonstrated a high-yet-linear working curve, fast response time (<100 ms), highly stable conductivity under large deformation, and excellent cycling stability (>3000 cycles). The MOG@TPE fibrous sensors were demonstrated to be directly attached to the human skin to monitor the real-time movements of large/facet joints of the elbow, wrist, finger, and knee. It is believed that the present work for preparing the stretchable ionic conductive fibers holds great promise for applications in fibrous wearable sensors with broad temperature range, large stretchability, stable conductivity, and high wearing comfort.


Asunto(s)
Materiales Biocompatibles/química , Dispositivos Electrónicos Vestibles , Zinc/química , Conductividad Eléctrica , Ensayo de Materiales , Estrés Mecánico
10.
Sci Bull (Beijing) ; 67(23): 2428-2437, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36566066

RESUMEN

The creation of ultrafine alloy nanoparticles (<5 nm) that can maintain surface activity and avoid aggregation for heterogeneous catalysis has received much attention and is extremely challenging. Here, ultrafine PtRh alloy nanoparticles imprisoned by the cavities of reduced chiral covalent imine cage (PtRh@RCC3) are prepared successfully by an organic molecular cage (OMC) confinement strategy, while the soluble RCC3 can act as a homogenizer to homogenize the heterogeneous PtRh alloy in solution. Moreover, the X-ray absorption near-edge structure (XANES) results show that the RCC3 can act as an electron-acceptor to withdraw electrons from Pt, leading to the formation of higher valence Pt atoms, which is beneficial to improving the catalytic activity for the reduction of 4-nitrophenol. Attributed to the synergistic effect of Pt/Rh atoms and the unique function of the RCC3, the reaction rate constants of Pt1Rh16@RCC3 are 49.6, 8.2, and 5.5 times than those of the Pt1Rh16 bulk, Pt@RCC3 and Rh@RCC3, respectively. This work provides a feasible strategy to homogenize heterogeneous alloy nanoparticle catalysts in solution, showing huge potential for advanced catalytic application.


Asunto(s)
Electrones , Nanopartículas , Oxidación-Reducción , Aleaciones/química , Porosidad , Nanopartículas/química , Catálisis , Oxidantes
11.
Chem Commun (Camb) ; 58(2): 185-207, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34881748

RESUMEN

Flexible electrochemical supercapacitors have shown great potential in the next-generation wearable and implantable energy-storage devices. Conductive polymer hydrogels usually possess unique porosity, high conductivity, and broadly tunable properties through molecular designs and structural regulations, thus holding tremendous promise as high-performance electrodes and electrolytes for flexible electrochemical supercapacitors. Numerous chemical and structural designs have provided unlimited opportunities to tune the properties of conductive polymer hydrogels to match the various practical demands. Various electrically and ionically conductive hydrogels have been developed to fabricate novel electrodes and electrolytes with satisfactory mechanical and electrochemical performance. This feature article focuses on the fabrication and applications of conductive polymer hydrogel composites and nanocomposites as respective electrodes and electrolytes for flexible electrochemical supercapacitors. First, we introduce the representative strategies to prepare electrically and ionically conductive polymer hydrogels. Second, conductive polymer hydrogel composites and nanocomposites as supercapacitor electrodes and electrolytes are presented and discussed. Finally, challenges and perspectives on conductive polymer hydrogel composites and nanocomposites for future flexible electrochemical supercapacitors are presented.


Asunto(s)
Técnicas Electroquímicas , Hidrogeles/química , Nanocompuestos/química , Polímeros/química , Conductividad Eléctrica
12.
Nanotechnology ; 21(33): 335701, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20657039

RESUMEN

We report that the graphene sheets can be stably dispersed in water by hydrophobic interaction with polyacrylamide. Most interestingly, the resultant graphene-polyacrylamide complexes show a reversible pH responsive property although polyacrylamide itself does not possess such characteristics. This method opens up novel opportunities for the potential applications of graphene in intelligent sensors, biology, medicine, nanoelectronics and other relevant areas.


Asunto(s)
Resinas Acrílicas/química , Carbono/química , Nanoestructuras/química , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Óxidos/química , Solubilidad , Espectrofotometría Ultravioleta , Agua
13.
J Phys Chem B ; 113(7): 1857-68, 2009 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-19170556

RESUMEN

Poly(2,2,2-trifluoroethyl acrylate)-block-poly(ethylene oxide) (PTFEA-b-PEO) amphiphilic diblock copolymer was synthesized via the reversible addition-fragmentation transfer polymerization of 2,2,2-triffluroethyl acrylate with dithiobenzoyl-terminated poly(ethylene oxide) as a chain-transfer agent. The amphiphilic diblock copolymer was incorporated into epoxy resin to prepare the nanostructured epoxy thermosets. The nanostructures were investigated by means of atomic force microscopy, small-angle X-ray scattering, and dynamic mechanical analysis. In terms of the miscibility of the subchains of the block copolymer with epoxy after and before curing reaction, it is judged that the formation of the nanostructures follows the mechanism of self-assembly. The static contact angle measurements indicate that the nanostructured thermosets containing PTFEA-b-PEO diblock copolymer displayed a significant enhancement in surface hydrophobicity as well as a reduction in surface free energy. The improvement in surface properties was ascribed to the enrichment of the fluorine-containing subchain (i.e., PTFEA block) of the amphiphilic diblock copolymer on the surface of the nanostructured thermosets, which was evidenced by surface atomic force microscopy and energy-dispersive X-ray spectroscopy.


Asunto(s)
Acrilatos/química , Resinas Epoxi/química , Nanoestructuras/química , Polietilenglicoles/química , Temperatura , Acrilatos/síntesis química , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Molecular , Tamaño de la Partícula , Polietilenglicoles/síntesis química , Propiedades de Superficie
14.
J Phys Chem B ; 113(29): 9741-8, 2009 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-19603838

RESUMEN

Polyimide (PI) and PI nanocomposite fibers containing different amounts of multiwalled carbon nanotubes (MWNTs) were produced for the first time by electrospinning. The membranes prepared were composed of highly aligned nanofibers and showed significant enhancement in mechanical properties, compared with the membranes prepared by conventional solution-casting method. Surface-functionalized MWNTs were homogeneously dispersed and highly aligned along the fiber axis, whereas most of the pristine MWNTs formed aggregates or bundles and even protruded out of the electrospun nanofibers. The thermal and mechanical properties of polyimide matrix were significantly improved with the incorporation of MWNTs. And the elongation at break of the nanofiber membranes can reach 100% for the nanotube loading level of 3.5 wt %. It was found that electrospinning the in situ prepared MWNT/poly(amic acid) solution can achieve better polymer chain orientation and thus better mechanical properties of the as-prepared membranes. Our study demonstrates a good example for the preparation of high-performance polymer/carbon nanotube nanocomposites by using electrospinning.


Asunto(s)
Membranas Artificiales , Nanoestructuras/química , Nanotubos de Carbono/química , Resinas Sintéticas/química , Electroquímica , Tamaño de la Partícula , Propiedades de Superficie , Temperatura
15.
J Biomed Mater Res B Appl Biomater ; 81(2): 343-50, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17022054

RESUMEN

Morphological and mechanical properties of hydroxyapatite (HAP)-reinforced polycaprolactone (PCL) were studied. The objective was to examine how morphological features alter the bulk mechanical properties in our laboratory-synthesized HAP-reinforced PCL. HAP crystals were synthesized by hydrolysis of mixtures of calcium and phosphate salts in the laboratory with wet chemical methods. The properties of the commercially available hydroxyapatite (HAP(1)) are compared with that of laboratory-synthesized hydroxyapatite (HAP(2)). The HAP crystals and composition were characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectrometry (FTIR). The HAP(1) and HAP(2) crystals were dispersed into polymers to examine the mechanical behavior of bioactive composites, and the interfacial interactions between the polymer and HAP crystals are addressed. The FTIR results confirmed that the two forms of HAP crystals are consistent in terms of the functional chemical groups. The wide angle X-ray diffraction study was performed to determine the crystallinity of the bioactive composites. It was observed that the crystallinty of HAP-filled PCL steadily increased as the filler concentration increased. Generally, HAP(2) has a particle size considerably smaller than HAP(1) and the composite derived had higher modulus than conventional HAP-filled polymers. This increase in modulus is attributed to better interfacial interaction. Bioresorbability tests performed on HAP particles found that the synthesized HAP had higher resorption rates. It is clear that the mechanical properties are influenced by the particle size and therefore by the processing method used.


Asunto(s)
Materiales Biocompatibles/química , Durapatita/química , Poliésteres/química , Animales , Humanos , Técnicas In Vitro , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
16.
Nanoscale ; 9(13): 4445-4455, 2017 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-28304051

RESUMEN

Electroactive materials, such as nickel sulfide (NiS), with high theoretical capacities have attracted broad interest to fabricate highly efficient supercapacitors. Preventing aggregation and increasing the conductivity of NiS particles are key challenging tasks to fully achieve excellent electrochemical properties of NiS. One effective approach to solve these problems is to combine NiS with highly porous and conductive carbon materials such as carbon aerogels. In this study, a green and facile method for the in situ growth of NiS particles on bacterial cellulose (BC)-derived sheet-like carbon aerogels (CAs) has been reported. CA prepared by the dissolution-gelation-carbonization process was used as a framework to construct NiS/CA composite aerogels with NiS uniformly decorated on the pore walls of CA. It was found that the NiS/CA composite aerogel electrodes exhibit excellent capacitive performance with high specific capacitance (1606 F g-1), good rate capacitance retention (69% at 10 A g-1), and enhanced cycling stability (91.2% retention after 10 000 continuous cyclic voltammetry cycles at 100 mV s-1). Furthermore, asymmetric supercapacitors (ASCs) were constructed utilizing NiS/CA composite and CA as the positive and negative electrode materials, respectively. Through the synergistic effect of three-dimensional porous structures and conductive networks derived from CA and the high capacitive performance offered by NiS, the ASC device exhibited an energy density of ∼21.5 Wh kg-1 and a power density of 700 W kg-1 at the working voltage of 1.4 V in 2 M KOH aqueous solution. The ASC device also showed excellent long-term cycle stability with ∼87.1% specific capacitance retention after 10 000 cycles of cyclic voltammetry scans. Therefore, the NiS/CA composite shows great potential as a promising alternative to high-performance electrode materials for supercapacitors.


Asunto(s)
Bacterias/química , Celulosa/química , Electrodos , Níquel , Carbono , Capacidad Eléctrica , Electrónica , Geles
17.
ACS Appl Mater Interfaces ; 8(6): 3558-66, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26302501

RESUMEN

To remit energy crisis and environmental deterioration, non-noble metal nanocomposites have attracted extensive attention, acting as a fresh kind of cost-effective electrocatalysts for hydrogen evolution reaction (HER). In this work, hierarchically organized nitrogen-doped carbon nanofiber/molybdenum disulfide (pBC-N/MoS2) nanocomposites were successfully prepared via the combination of in situ polymerization, high-temperature carbonization process, and hydrothermal reaction. Attributing to the uniform coating of polyaniline on the surface of bacterial cellulose, the nitrogen-doped carbon nanofiber network acts as an excellent three-dimensional template for hydrothermal growth of MoS2 nanosheets. The obtained hierarchical pBC-N/MoS2 nanocomposites exhibit excellent electrocatalytic activity for HER with small overpotential of 108 mV, high current density of 8.7 mA cm(-2) at η = 200 mV, low Tafel slope of 61 mV dec(-1), and even excellent stability. The greatly improved performance is benefiting from the highly exposed active edge sites of MoS2 nanosheets, the intimate connection between MoS2 nanosheets and the highly conductive nitrogen-doped carbon nanofibers and the three-dimensional networks thus formed. Therefore, this work provides a novel strategy for design and application of bacterial cellulose and MoS2-based nanocomposites as cost-effective HER eletrocatalysts.


Asunto(s)
Bacterias/química , Carbono/química , Celulosa/química , Disulfuros/química , Hidrógeno/química , Molibdeno/química , Nanocompuestos/química , Nanofibras/química , Técnicas Electroquímicas
18.
J Hazard Mater ; 283: 730-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25464316

RESUMEN

Free-standing poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) membranes with polydopamine (PDA) coating were prepared based on the combination of electrospinning and self-polymerization of dopamine. This is a facile, mild, controllable, and low-energy consumption process without any rigorous restriction to reactive conditions. Benefiting from the high specific surface area of electrospun membranes and the abundant "adhesive" functional groups of polydopamine, the as-prepared membranes exhibit efficient adsorption performance towards methyl blue with the adsorption capacity reaching up to 1147.6 mg g(-1). Moreover, compared to other nanoparticle adsorbents, the as-prepared self-standing membrane is highly flexible, easy to operate and retrieve, and most importantly, easy to elute, and regenerate, which enable its potential applications in wastewater treatment.


Asunto(s)
Resinas Acrílicas/química , Colorantes/química , Indoles/química , Membranas Artificiales , Polímeros/química , Alcohol Polivinílico/química , Reciclaje/métodos , Purificación del Agua/métodos , Adsorción , Aguas Residuales/química
19.
ACS Appl Mater Interfaces ; 5(12): 5617-22, 2013 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-23721281

RESUMEN

A simple and efficient method has been developed for preparing hierarchical nanostructures of polyimide (PI)/ZnO fibers by combining electrospinning and direct ion-exchange process. Poly(amic acid) (PAA) nanofibers are first prepared by electrospinning, and then, the electrospun PAA fibers are immersed into ZnCl2 solution. After a subsequent thermal treatment, imidization of PAA and formation of ZnO nanoparticles can be simultaneously achieved in one step to obtain PI/ZnO composite fibers. SEM images show that ZnO nanoparticles are densely and uniformly immobilized on the surface of electrospun PI fibers. Furthermore, the morphology of ZnO can be tuned from nanoplatelets to nanorods by changing the initial concentration of ZnCl2 solution. Photocatalytic degradation tests show an efficient degradation ability of PI/ZnO composite membranes toward organic dyes. Meanwhile, the free-standing membrane is highly flexible, easy to handle, and easy to retrieve, which enables its use in water treatment. This simple and inexpensive approach can also be applied to fabricating other hierarchically nanostructured composites.


Asunto(s)
Imidas/química , Nanofibras/química , Óxido de Zinc/química , Cloruros , Intercambio Iónico , Microscopía Electrónica de Rastreo , Nanofibras/efectos de la radiación , Nanopartículas , Procesos Fotoquímicos , Polímeros/química , Compuestos de Zinc
20.
ACS Appl Mater Interfaces ; 2(12): 3702-8, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21067202

RESUMEN

Graphene oxides (GO) were exfoliated in N,N-dimethylformamide by simple sonication treatment of the as-prepared high quality graphite oxides. By high-speed mixing of the pristine poly(amic acid) (PAA) solution with graphene oxide suspension, PAA solutions containing uniformly dispersed GO can be obtained. Polyimide (PI) nanocomposite films with different loadings of functionalized graphene sheets (FGS) can be prepared by in situ partial reduction and imidization of the as-prepared GO/PAA composites. Transmission electron microscopy observations showed that the FGS were well exfoliated and uniformly dispersed in the PI matrix. It is interesting to find that the FGS were highly aligned along the surface direction for the nanocomposite film with 2 wt % FGS. Tensile tests indicated that the mechanical properties of polyimide were significantly enhanced by the incorporation of FGS, due to the fine dispersion of high specific surface area of functionalized graphene nanosheets and the good adhesion and interlocking between the FGS and the matrix.


Asunto(s)
Derivados del Benceno/química , Cristalización/métodos , Grafito/química , Membranas Artificiales , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Polímeros/química , Calor , Ensayo de Materiales , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA