Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Soft Matter ; 16(7): 1792-1800, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-31970380

RESUMEN

We have investigated the synergism between plant phenols and carotenoids in protecting the phosphatidylcholine (PC) membranes of giant unilamellar vesicles (GUVs) from oxidative destruction, for which chlorophyll-a (Chl-a) was used as a lipophilic photosensitizer. The effect was examined for seven different combinations of ß-carotene (ß-CAR) and plant phenols. The light-induced change in GUV morphology was monitored via conventional optical microscopy, and quantified by a dimensionless image-entropy parameter, ΔE. The ΔE-t time evolution profiles exhibiting successive lag phase, budding phase and ending phase could be accounted for by a Boltzmann model function. The length of the lag phase (LP in s) for the combination of syringic acid and ß-CAR was more than seven fold longer than for ß-CAR alone, and those for other different combinations followed the order: salicylic acid < vanillic acid < syringic acid > rutin > caffeic acid > quercetin > catechin, indicating that moderately reducing phenols appeared to be the most efficient membrane co-stabilizers. The same order held for the residual contents of ß-CAR in membranes after light-induced oxidative degradation as determined by resonance Raman spectroscopy. The dependence of LP on the reducing power of phenols coincided with the Marcus theory plot for the rate of electron transfer from phenols to the radical cation ß-CAR˙+ as a primary oxidative product, suggesting that the plant phenol regeneration of ß-CAR plays an important role in stabilizing the GUV membranes, as further supported by the involvement of CAR˙+ and the distinct shortening of its lifetime as shown by transient absorption spectroscopy.


Asunto(s)
Antioxidantes/farmacología , Membrana Dobles de Lípidos/química , Membranas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/química , Carotenoides/farmacología , Membrana Dobles de Lípidos/antagonistas & inhibidores , Membranas/química , Oxidación-Reducción/efectos de los fármacos , Fenoles/farmacología , Liposomas Unilamelares/química
2.
Anal Chem ; 90(3): 2126-2133, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29298041

RESUMEN

We have attempted to evaluate, on the basis of optical microscopy for a single giant unilamellar vesicle (GUV), the potency of antioxidants in protecting GUV membranes from oxidative destruction. Photosensitized membrane budding of GUVs prepared from soybean phosphatidylcholine with chlorophyll a (Chl a) and ß-carotene (ß-Car) as photosensitizer and protector, respectively, were followed by microscopic imaging. A dimensionless entropy parameter, ΔE, as derived from the time-resolved microscopic images, was employed to describe the evolution of morphological variation of GUVs. As an indication of membrane instability, the budding process showed three successive temporal regimes as a common feature: a lag phase prior to the initiation of budding characterized by LP (in s), a budding phase when ΔE increased with a rate of kΔE (in s-1), and an ending phase with morphology stabilized at a constant ΔEend (dimensionless). We show that the phase-associated parameters can be objectively obtained by fitting the ΔE-t kinetics curves to a Boltzmann function and that all of the parameters are rather sensitive to ß-Car concentration. As for the efficacy of these parameters in quantifying the protection potency of ß-Car, kΔE is shown to be most sensitive for ß-Car in a concentration regime of biological significance of <1 × 10-7 M, whereas LP and ΔEend are more sensitive for ß-Car concentrations exceeding 1 × 10-7 M. Furthermore, based on the results of GUV imaging and fluorescence and Raman spectroscopies, we have revealed for different phases the mechanistic interplay among 1O2* diffusion, PC-OOH accumulation, Chl a and/or ß-Car consumption, and the morphological variation. The developed assay should be valuable for characterizing the potency of antioxidants or prooxidants in the protection or destruction of the membrane integrity of GUVs.


Asunto(s)
Antioxidantes/química , Clorofila A/química , Fármacos Fotosensibilizantes/química , Liposomas Unilamelares/química , beta Caroteno/química , Clorofila A/efectos de la radiación , Difusión , Luz , Estrés Oxidativo/efectos de la radiación , Fosfatidilcolinas/química , Fármacos Fotosensibilizantes/efectos de la radiación , Oxígeno Singlete/química , Glycine max/química , Liposomas Unilamelares/efectos de la radiación
3.
Biomaterials ; 190-191: 86-96, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30408640

RESUMEN

Phototherapy has drawn increasing attention including the use of nanocarriers with high drug loading capacity and delivery efficacy for target-specific therapy. We have made use of naturally-occurring halloysite nanotubes (HNTs) to build a biomimetic nanocarrier platform for target-specific delivery of phototherapeutic agents. The HNTs were decorated with poly(sodium-p-styrenesulfonate) (PSS) to enhance the biocompatibility, and were further functionalized by lumen loading the type-II photosensitizer indocyanine green (ICG). The HNT-PSS-ICG nanocarrier, without further tethering targeting groups, was shown to associate with the membrane of giant unilamellar vesicles (GUVs) via Pickering effects. Application of HNT-PSS-ICG nanocarrier to human breast cancer cells gave rise to a cell mortality as high as 95%. The HNT-PSS-ICG nanocarrier was further coated with MDA-MB-436 cell membranes to endow it with targeting therapy performance against breast cancer, which was confirmed by in vivo experiments using breast cancer tumors in mice. The membrane-coated and biocompatible nanocarrier preferentially concentrated in the tumor tissue, and efficiently decreased the tumor volume by a combination of photodynamic and photothermal effects upon near-infrared light exposure. Our results demonstrate that the HNT-based nanocarrier by virtue of facial preparation and high loading capacity can be a promising candidate for membrane-targeting nanocarriers.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Portadores de Fármacos/química , Verde de Indocianina/administración & dosificación , Nanotubos/química , Fármacos Fotosensibilizantes/administración & dosificación , Animales , Materiales Biocompatibles/química , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Verde de Indocianina/uso terapéutico , Ratones Desnudos , Nanotubos/ultraestructura , Fotoquimioterapia , Fármacos Fotosensibilizantes/uso terapéutico , Polímeros/química , Ácidos Sulfónicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA