Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 238(1): 297-312, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36600379

RESUMEN

Wood is the most important repository of assimilated carbon in the biosphere, in the form of large polymers (cellulose, hemicelluloses including glucuronoxylan, and lignin) that interactively form a composite, together with soluble extractives including phenolic and aliphatic compounds. Molecular interactions among these compounds are not fully understood. We have targeted the expression of a fungal α-glucuronidase to the wood cell wall of aspen (Populus tremula L. × tremuloides Michx.) and Arabidopsis (Arabidopsis thaliana (L.) Heynh), to decrease contents of the 4-O-methyl glucuronopyranose acid (mGlcA) substituent of xylan, to elucidate mGlcA's functions. The enzyme affected the content of aliphatic insoluble cell wall components having composition similar to suberin, which required mGlcA for binding to cell walls. Such suberin-like compounds have been previously identified in decayed wood, but here, we show their presence in healthy wood of both hardwood and softwood species. By contrast, γ-ester bonds between mGlcA and lignin were insensitive to cell wall-localized α-glucuronidase, supporting the intracellular formation of these bonds. These findings challenge the current view of the wood cell wall composition and reveal a novel function of mGlcA substituent of xylan in fastening of suberin-like compounds to cell wall. They also suggest an intracellular initiation of lignin-carbohydrate complex assembly.


Asunto(s)
Arabidopsis , Populus , Madera/química , Lignina/metabolismo , Xilanos/metabolismo , Ácido Glucurónico/análisis , Ácido Glucurónico/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Populus/metabolismo
2.
Ecotoxicol Environ Saf ; 166: 474-481, 2018 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-30312946

RESUMEN

Nanomaterials, such as ZrO2 nanoparticles (ZrO2 NPs), are very effective in water remediation. However, the safety issues related to nanoparticle release and toxicity to humans remain to be resolved. Here we evaluated the cytotoxicity of ZrO2 NPs and their adducts with pollutants using a human cell panel containing stomach, intestine, liver and kidney cells. We found that different pollutants or ZrO2NP/pollutant adducts targeted cells from different organs, suggesting the necessity of a cell panel to model oral exposures. The cooperation of ZrO2 NPs and pollutants was quite complex, consisting of synergistic, antagonistic, or additive effects. For example, ZrO2 NPs enhanced the cytotoxicity of Pb2+ in GES-1 cells and of Pb2+, Cd2+ in FHC cells, while alleviating the toxicity of Pb2+ and As (III) in HepG2 and Hek293 cells. Our results also indicated that even concentrations of pollutants that meet the national standard, the ZrO2 NPs concentration should be kept below 17 µg/mL to avoid ZrO2 NP/pollutant adduct synergistic toxicity.


Asunto(s)
Biodegradación Ambiental , Células Epiteliales/efectos de los fármacos , Nanopartículas/toxicidad , Aguas Residuales , Circonio/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Riñón/citología , Hígado/citología , Polímeros/química , Especies Reactivas de Oxígeno/metabolismo , Estómago/citología
3.
IET Nanobiotechnol ; 14(1): 98-104, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31935685

RESUMEN

A highly sensitive, non-invasive, and rapid HBV (Hepatitis B virus) screening method combining membrane protein purification with silver nanoparticle-based surface-enhanced Raman scattering (SERS) spectroscopy was developed in this study. Reproducible serum protein SERS spectra were obtained from cellulose acetate membrane-purified human serum from 94 HBV patients and 89 normal groups. Tentative assignments of serum protein SERS spectra showed that the HBV patients primarily led to specific biomedical changes of serum protein. Principal components analysis and linear discriminate analysis were introduced to analyse the obtained spectra, with the diagnostic sensitivity of 92.6% and specificity of 77.5% were achieved for differentiating HBV patients from normal groups.


Asunto(s)
Celulosa/análogos & derivados , Hepatitis B/sangre , Hepatitis B/diagnóstico , Espectrometría Raman/métodos , Biomarcadores/sangre , Proteínas Sanguíneas/análisis , Celulosa/química , Virus de la Hepatitis B , Humanos , Nanopartículas del Metal/química , Análisis de Componente Principal , Plata/química , Proteínas Virales/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA